Experimental Study of Post-Fire Behavior of Steel Fiber Reinforced Ceramsite Concrete Filled Steel Tubes

2012 ◽  
Vol 204-208 ◽  
pp. 3401-3404
Author(s):  
Jin Yi Zhang ◽  
Xin Tang Wang ◽  
Ping Xin Sun ◽  
Hong Liang Sun

The axial compressive mechanical behavior of steel fiber reinforced ceramsite concrete filled steel tubes (noted as SFR-CCST) after exposure to fire are experimentally studied. Effect of furnace temperature, dosage of steel fiber in specimens on the post-fire mechanical performance of the specimens after exposure to fire was especially discussed. The results show that all the specimens of SFR-CCST have higher post-fire bearing capacity and better plastic deformation, and there was no obvious descending segment in the load-strain curves of the most specimens after exposure to fire. It was concluded that the furnace temperature applied to the specimens and dosage of steel fiber in the specimens of SFR-CCST has some effect on the post-fire mechanical performance of the ceramsite concrete-filled steel tubes after exposure to fire, and the dosage of steel fiber of 0.5% has the most effect on the post-fire performance of lightweight aggregate concrete filled steel tubes after exposure to fire.

2013 ◽  
Vol 790 ◽  
pp. 177-180
Author(s):  
Peng Fei Ren ◽  
Jin Can Xu ◽  
Jian Qi Lu ◽  
Xin Tang Wang

The post-fire behavior of a set of steel fiber reinforced lightweight aggregate concrete filled steel tubular short columns (noted as SFLC-SSC) after exposure to fire was experimentally studied. Effect of the maximum value of fire response temperatures of the tubes and their geometric parameters on the strength and the other mechanical property of the specimens were especially discussed. The experimental results show that the specimens of SFLC-SSC have higher post-fire bearing capacity and better plastic deformation. It was concluded that the maximum response temperature of the specimens has great effect on the post-fire bearing capacity of steel fiber reinforced concrete-filled steel tubes subjected to fire load, and incorporation of 0.5% of volume of steel fiber is best for enhancing the axial compressive bearing capacity of the specimens of SFLC-SSC after exposure to fire.


2013 ◽  
Vol 790 ◽  
pp. 181-184
Author(s):  
Hai Lun Tong ◽  
Tian Hong Wang ◽  
Jian Qi Lu ◽  
Xin Tang Wang

The post-fire axial compressive behavior of a set of steel fiber reinforced ceramsite concrete filled steel tubular short columns (noted as SFCC-SSC) was experimentally studied. Effect of the maximum value of fire response temperatures of the specimens and some parameters on the axial compression performance of the specimens was especially discussed. The results show that the surface of the steel tubes after fire presented dark red for 700°Cof furnace temperature and orange red for 900°C, and there was no obvious descending segment in post-fire load-displacement curves of the most specimens subjected to fire load. It was concluded that the axial bearing capacity of the specimens aftersuffering the furnace temperature of 900°C is much less than that of the specimens not subjected to fire load, and the volume of steel fiber of 0.5% of has the greatest effect on post-fire bearing capacity of specimens of SFCC-SSC.


2013 ◽  
Vol 790 ◽  
pp. 173-176
Author(s):  
Jin Can Xu ◽  
Peng Fei Ren ◽  
Hai Lun Tong ◽  
Xin Tang Wang

The post-fire behavior of a set of self-stress lightweight aggregate concrete filled steel tubular short columns (noted as SSLC-SSC) after exposure to fire was experimentally studied. Effect of the maximum value of fire response temperatures of the tubes and their geometric parameters on the strength and the other mechanical property of the specimens were especially discussed. The experimental results show that the specimens of SSLC-SSC have higher post-fire bearing capacity and better plastic deformation, there was no obvious descent segment in post-fire load-displacement curves of the most specimens subjected to fire load. It was concluded that the maximum response temperature of specimens has great effect on the post-fire bearing capacity of self-stress concrete-filled steel tubes subjected to fire load, and the value of self-stress corresponding to 10% of dosage of expansive agent has the greatest effect on post-fire bearing capacity of specimens of SSLC-SSC.


2018 ◽  
Vol 162 ◽  
pp. 02001
Author(s):  
Wasan Khalil ◽  
Hisham Ahmed ◽  
Zainab Hussein

In this investigation, sustainable High Performance Lightweight Aggregate Concrete (HPLWAC) containing artificial aggregate as coarse lightweight aggregate (LWA) and reinforced with mono fiber, double and triple hybrid fibers in different types and aspect ratios were produced. High performance artificial lightweight aggregate concrete mix with compressive strength of 47 MPa, oven dry density of 1828 kg/m3 at 28 days was prepared. The Fibers used included, macro hooked steel fiber with aspect ratio of 60 (type S1), macro crimped plastic fiber (P) with aspect ratio of 63, micro steel fiber with aspect ratio of 65 (type S), and micro polypropylene fiber (PP) with aspect ratio of 667. Four HPLWAC mixes were prepared including, one plain concrete mix (without fiber), one mono fiber reinforced concrete mixes (reinforced with plastic fiber with 0.75% volume fraction), one double hybrid fiber reinforced concrete mixes (0.5% plastic fiber + 0.25% steel fiber type S), and a mix with triple hybrid fiber (0.25% steel fiber type S1+ 0.25% polypropylene fiber + 0.25% steel fiber type S). Fresh (workability and fresh density) and hardened concrete properties (oven dry density, compressive strength, ultrasonic pulse velocity, splitting tensile strength, flexural strength, static modules of elasticity, thermal conductively, and water absorption) were studied. Generally, mono and hybrid (double and triple) fiber reinforced HPLWAC specimens give a significant increase in splitting tensile strength and flexural strength compared with plain HPLWAC specimens. The percentage increases in splitting tensile strength for specimens with mono plastic fiber are, 20.8%, 31.9%, 36.4% and 41%, while the percentage increases in flexure strength are 19.5%, 37%, 33.9% and 34.2% at 7, 28, 60, 90 days age respectively relative to the plain concrete. The maximum splitting tensile and flexure strengths were recorded for triple hybrid fiber reinforced HPLWAC specimens. The percentage increases in splitting tensile strength for triple hybrid fiber reinforced specimens are 19.5%, 37%, 33.9% and 34.2%, while the percentage increases in flexure strength are 50.5%, 62.4. %, 66.8% and 62.2% at 7, 28, 60 and 90 days age respectively relative to the plain concrete specimens.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Shunbo Zhao ◽  
Changyong Li ◽  
Mingshuang Zhao ◽  
Xiaoyan Zhang

Steel fiber reinforced lightweight-aggregate concrete (SFRLAC) has many advantages applied in structural engineering. In this paper, the autogenous shrinkage and drying shrinkage of SFRLAC for up to 270 days were measured, considering the effects of types of coarse and fine aggregates with the changes of water-to-binder ratio and volume fraction of steel fiber, respectively. The properties of mix workability, apparent density, and compressive strength of SFRLAC were also reported and discussed in relation to above factors. Test results show that the development of autogenous and drying shrinkage of SFRLAC was fast within 28 days and tended to be steady after 90 days. The development of autogenous shrinkage of SFRLAC reduced with the increasing water-to-binder ratio and by using the expanded shale with higher soundness and good water absorption, especially at early age within 28 days; the later drying shrinkage was reduced and the development of drying shrinkage was slowed down with the increasing volume fraction of steel fiber obviously; manufactured sand led to less autogenous shrinkage but greater drying shrinkage than fine lightweight aggregate in SFRLAC. The regularities of autogenous shrinkage and drying shrinkage of SFRLAC expressed as the series of hyperbola are analyzed.


2011 ◽  
Vol 250-253 ◽  
pp. 609-613 ◽  
Author(s):  
Hong Wei Song ◽  
Hai Tao Wang

The impact resistance of steel fiber reinforced lightweight aggregate concrete was presented in a drop weight test. In this test, 5 groups of disc specimens with different steel fiber volumes including 0.0%, 0.5%, 1.0%, 1.5% and 2.0% were tested. The experimental results indicated that the impact resistance of lightweight aggregate concrete is improved with the increase in fiber volume. As the variation in experimental results, a statistical evaluation was performed to study the influence of impact resistance of steel fiber reinforced lightweight aggregate concrete with different steel fiber volumes. Further more, the impact resistance was simulated with probability distribution by Log-normal method. And the goodnees-of-fit tests indicate that the Log-normal method has good fitness to the impact resistance of steel fiber reinforced lightweight aggregate concrete.


Sign in / Sign up

Export Citation Format

Share Document