Effect of Fly Ash on Thermal and Mechanical Properties of Expanded Perlite Insulation Product

2012 ◽  
Vol 204-208 ◽  
pp. 4151-4155
Author(s):  
Zhan Bing Li ◽  
Xiu Wen Wu ◽  
Xiao Chao Chen

Expanded perlite insulation samples were prepared with expanded perlite as aggregate, aluminum dihydrogen phosphate as binder and fly ash as addition by mixing, molding, drying and calcination. The effects of fly ash mass percentage on the compressive strength, thermal conductivity, moisture content and density of the samples were studied. The results indicated that the combination properties of adding 10 % fly ash were the best among the all samples according to the national standards (GB/T10303-2001) No 350 Qualified of expanded perlite insulation products. Its compressive strength, thermal conductivity, moisture content and density were 0.456 Mpa, 0.08165 W/ (m K), 0.02 mass % and 259 kg/m3, respectively.

2014 ◽  
Vol 51 (5) ◽  
pp. 570-582 ◽  
Author(s):  
Joon Kyu Lee ◽  
Julie Q. Shang

Fly ash is often used as a binder for modifying the properties of geomaterials, such as organic and expansive soils, sludge from water treatment, dredged sediments, mine tailings, etc. Changes in thermal and mechanical properties of compacted mixtures of mine tailings and fly ash are studied over a curing period of 120 h. The study includes the measurement of thermal conductivity, temperature, unconfined compressive strength, and elastic modulus. Effects of the amount of fly ash added to mine tailings, molding water content, and compaction energy on these properties are investigated. Pore-size distribution and surface texture are analyzed to characterize the microstructures of fly ash treated–mine tailings. Relationships between the thermal conductivity and properties that capture packing and mechanical characteristics of mine tailings and fly ash mixtures are established. These observations provide enhanced understanding of thermal, mechanical, and structural properties of fly ash–treated mine tailings, which is associated with the hydration process at the early stage of the mixtures.


2014 ◽  
Vol 887-888 ◽  
pp. 77-80 ◽  
Author(s):  
Yu Shi ◽  
Hui Wen Yuan ◽  
Zhong Zi Xu ◽  
Chun Hua Lu ◽  
Ya Ru Ni ◽  
...  

This paper focuses on both thermal and mechanical properties of the composite pastes. Heat-treatment was carried out at temperatures up to 105 and 900 °C for 6h, respectively. Thermal conductivity of the specimens enriched with 3 wt% nanoSiO2 was approximately 60% higher than that of pure paste. Volume heat capacity of the composite pastes displayed 28% increase. Moreover, the composite pastes contributed to ~25% improvement of compressive strength. XRD, and TG-DSC were employed to investigate the cause of physical and thermal changes in the heated specimens.


2020 ◽  
Vol 26 (1) ◽  
pp. 9-16
Author(s):  
Yulita Arni Priastiwi ◽  
Arif Hidayat ◽  
Dwi Daryanto ◽  
Zidny Salamsyah Badru

The presence of white soil in a geopolymer mortar affects the physical and mechanical properties of the mortar itself, especially in compressive strength, density and modulus of elasticity produced. Geopolymer mortar composed of fly ash, sand, water, and NaOH which acts as an alkaline activator compared to mortar from the same material, but white soil from Kupang is added as a substitution of fly ash. Specimens are made in six variations. Geopolymer mortar composers using a ratio of 1 binder: 3 sand with w/b of 0.5. Binder composed of fly ash with white soil substitution of 0; 5; 10; 15; 20 and 30% by weight of fly ash. An activator NaOH 8M solution was added to the mixture. Both white soil and fly ash pass of sieve no. 200 with a moisture content of 0%. Mortar made measuring 5x5x5 cm. The mortar was treated by the oven of method at 60 oC for 24 hours until the mortar does not change in weight. The test results show geopolymer mortar with 15% substitution of white soil to fly ash has the highest compressive strength, density and modulus of elasticity among other variations. In all mortar variations, compressive strength at 14 days has reached 75% of strength at 28 days.


2012 ◽  
Vol 450-451 ◽  
pp. 773-777 ◽  
Author(s):  
Shu Ting Du ◽  
Jin Zhu Ma ◽  
Dong Wang

Taking the mix proportion of rammed earth dwellings in Anji as the basic standard, the physical properties, thermal properties, mechanical properties of rammed earth in various mix proportion have been tested by means of experiments. The results showed that the proportion of hydrated lime added to the rammed earth have a direct influence on the thermal conductivity, specific heat, compressive strength and shear strength of rammed earth specimens, the thermal and mechanical properties of modified rammed earth material is better when hydrated lime in the proportion of 10%~20%.


Author(s):  
A. F. Kosach ◽  
M. A. Rashchupkina ◽  
M. A. Darulis ◽  
V. G. Gorchakov

Purpose: The aim of the paper is to obtain the cement brick having high physical and mechanical properties due to the additive based on ultrafine ash particles obtained after the wet ash discharge at Omsk power-and-heating plant. Methodology: The mechanical and mechanochemical grinding is used to generate ultrafine ash particles. Research findings: Research investigations show that the use of ultrafine ash particles the size of which varies between 0.3 and 0.9 μm, allows up to 30% cement saving and increase the physical and mechanical properties of fly ashcement and fly ash sand-lime bricks. The compressive and flexural strength of the former increases by 35 % and 32.4 %, respectively. And the compressive strength of the latter increases by 30 %, while its thermal conductivity reduces by 6.5 %. The addition of ultrafine ash particles to cement brick composition improves the ecological situation in the region. Practical implications: The proposed technique can be used in the production of cement brick with improved physical and mechanical properties. The optimum ash/cement ratio is 30:70.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4013 ◽  
Author(s):  
Matías Leyton-Vergara ◽  
Alexis Pérez-Fargallo ◽  
Jesús Pulido-Arcas ◽  
Galo Cárdenas-Triviño ◽  
Jeremy Piggot-Navarrete

This research aims at clarifying the influence of the granulometry of expanded perlite, on the thermal conductivity, structural strength, density, and water absorption of lightweight mortars. Three original perlite gradations have been obtained and three pairs of twin test mortars have been tested with those gradations. SEM tests have also been run to clarify the interaction, at a microscopic level, between the expanded perlite and the cement grouting. The results indicate that the mere manipulation of the granulometry may have a considerable and very beneficial effect on the mixture’s properties, such as thermal conductivity and water absorption.


2014 ◽  
Vol 1049-1050 ◽  
pp. 234-237 ◽  
Author(s):  
Yu Han Zhao

The research integrates both phase change materials (PCM) and carbon nanotube (CNT)/carbon nanofiber (CNF) into cement mortars to improve their thermal and mechanical performances. The PCM will improve the thermal storage capability of the cement mortars, while CNT/CNF can improve their mechanical strength and thermal conductivity. Experimental results show that addition of 1 wt. % CNT and CNF into the cement mortars with 5 wt.% PCM can increase their compressive strength by 23% and 8% respectively, and increase their thermal conductivity by 26% and 9% respectively.


2013 ◽  
Vol 468 ◽  
pp. 28-31
Author(s):  
Lin Lin Li ◽  
Guo Zhong Li

Used the desulfurization gypsum, foaming agent and fly ash for molding thermal insulation foamed desulfurization gypsum, and studied the influence of different content of foaming agent on its density, mechanical properties and thermal conductivity. The result showed that when the content of foaming agent was 5%,the thermal conductivity was 0.052W/(m·K) reaching minimum, and the density of foamed desulfurization gypsum was 225Kg/m3 .To use glass fiber as reinforcing material for studying the effect of the vary content of glass fiber on strength of the material. The result showed that when the content of glass fiber was 1.5%, the flexural strength and compressive strength of the sample was increased 41.67%5.66% than the blank sample.


2018 ◽  
Vol 17 (9) ◽  
pp. 2023-2030
Author(s):  
Arnon Chaipanich ◽  
Chalermphan Narattha ◽  
Watcharapong Wongkeo ◽  
Pailyn Thongsanitgarn

2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


Sign in / Sign up

Export Citation Format

Share Document