Isolation, Screening and Identification of Phenol-Degrading Bacteria from Coking Wastewater

2012 ◽  
Vol 209-211 ◽  
pp. 2027-2031
Author(s):  
Xue Kai Sun ◽  
Xi Ping Ma ◽  
Cheng Bin Xu ◽  
Jie Bai ◽  
Wei Zhang

Phenol is the most common pollutant which can be found in several types of industries. It is highly toxic to human beings. To seek the best phenol-degrading bacteria, we collected activated sludge from an aeration tank of the coking wastewater treatment plant, Benxi Iron and Steel Corporation. Five phenol-degrading strains, designated BS3, BS4, BS23, BS28 and BS29, were isolated and screened from activated sludge. Under the conditions of initial phenol 500 mg•L-1,170 rpm and 28°C, the removal efficiencies of BS3, BS4, BS23, BS28 and BS29 strains reached to 79.6%±1.8%, 55.2%±1.0%, 62.4%±2.6%, 78.6%±2.0% and 61.2%±1.9% within 24 h, respectively. By a series of morphological and biochemical and physiological tests, the five phenol-degrading bacteria were identified. The results indicated that they were Pseudomonas spp.. Hence these strains can be effectively used for bioremediation of phenol contaminated water.

2012 ◽  
Vol 610-613 ◽  
pp. 2268-2274 ◽  
Author(s):  
Ming Yang Zhang ◽  
Ai Min Hao ◽  
Takahiro Kuba

Fast consumption of high quality phosphorus mines and uneven distribution in the world result in the shortage crisis for phosphorus, meanwhile lots of phosphate compounds which are discharged into nature water bodies by human beings have already induced many environmental problems. Because of this situation, phosphorus recovery from sewage sludge working in the aeration tank of wastewater treatment plant (WWTP) has been researched in the present study. Poly-phosphate (poly-P) and total phosphate (T-P) accumulated inside activated sludge could be released by thermal treatment at low temperature, 30% poly-P and 29% T-P could be released from sludge by heating at 70°C. Different kinds of pretreatments had been tested to improve phosphorus release from activated sludge in thermal treatment; addition of chelating reagent at final concentration of 2 mM before thermal treatment could improve the phosphorus release obviously, 68% poly-P and 53% T-P could be released into liquid phase. Approximately 85% T-P could be precipitated with calcium at pH 11; it was interesting to find precipitation occurred in neutral condition without pH adjustment.


1988 ◽  
Vol 20 (11-12) ◽  
pp. 131-136 ◽  
Author(s):  
A. D. Wong ◽  
C. D. Goldsmith

The effect of discharging specific oil degrading bacteria from a chemostat to a refinery activated sludge process was determined biokinetically. Plant data for the kinetic evaluation of the waste treatment plant was collected before and during treatment. During treatment, the 500 gallon chemostatic growth chamber was operated on an eight hour hydraulic retention time, at a neutral pH, and was fed a mixture of refinery wastewater and simple sugars. The biokinetic constants k (days−1), Ks (mg/L), and K (L/mg-day) were determined before and after treatment by Monod and Lineweaver-Burk plots. Solids discharged and effluent organic concentrations were also evaluated against the mean cell retention time (MCRT). The maximum utilization rate, k, was found to increase from 0.47 to 0.95 days−1 during the operation of the chemostat. Subsequently, Ks increased from 141 to 556 mg/L. Effluent solids were shown to increase slightly with treatment. However, this was acceptable due to the polishing pond and the benefit of increased ability to accept shock loads of oily wastewater. The reason for the increased suspended solids in the effluent was most likely due to the continual addition of bacteria in exponential growth that were capable of responding to excess substrate. The effect of the chemostatic addition of specific microbial inocula to the refinery waste treatment plant has been to improve the overall organic removal capacity along with subsequent gains in plant stability.


2018 ◽  
Vol 78 (7) ◽  
pp. 1517-1524 ◽  
Author(s):  
Riqiang Li ◽  
Jianxing Wang ◽  
Hongjiao Li

Abstract As a step toward bioaugmentation of coking wastewater treatment 45 bacteria strains were isolated from the activated sludge of a coking wastewater treatment plant (WWTP). Three strains identified as Bacillus cereus, Pseudomonas synxantha, and Pseudomonas pseudoaligenes exhibited high dehydrogenase activity which indicates a strong ability to degrade organic matter. Subsequently all three strains showed high naphthalene degradation abilities. Naphthalene is a refractory compound often found in coking wastewater. For B. cereus and P. synxantha the maximum naphthalene removal rates were 60.4% and 79.8%, respectively, at an initial naphthalene concentration of 80 mg/L, temperature of 30 °C, pH of 7, a bacteria concentration of 15% (V/V), and shaking speed of 160 r/min. For P. pseudoaligenes, the maximum naphthalene removal rate was 77.4% under similar conditions but at 35 °C.


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 963-967 ◽  
Author(s):  
Junwei Cao ◽  
Qiliang Lai ◽  
Yang Liu ◽  
Guizhen Li ◽  
Zongze Shao

A taxonomic study was carried out on strain GCS-AN-3T, which was isolated from a phenol-degrading consortium enriched from coking wastewater activated sludge of Beijing Shougang Company Limited during the screening of phenol-degrading bacteria. Cells of strain GCS-AN-3T were Gram-stain-negative, short rods, and oxidase-/catalase-positive. Growth was observed at salinities from 0 to 2.5 % and at temperatures from 10 to 37 °C. 16S rRNA gene sequence analysis showed that strain GCS-AN-3T was most closely related to Ottowia pentelensis DSM 21699T (96.2 %). The principal fatty acids were summed feature 3 (C16 : 1ω7c/C16 : 1ω6c), C16 : 0, summed feature 8 (C18 : 1ω7c/C18 : 1ω6c) and cyclo C17 : 0. The major respiratory quinone was Q-8. The polar lipids comprised phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine and an unknown phospholipid. The G+C content of the genomic DNA was 67.6 mol%. Thiosulfate could be utilized as co-substrate for aerobic growth and was oxidized to sulfate. On the basis of phenotypic, chemotaxonomic and molecular data, strain GCS-AN-3T is considered to represent a novel species of the genus Ottowia , for which the name Ottowia beijingensis sp. nov. is proposed (type strain GCS-AN-3T = LMG 27179T = CGMCC 1.12324T = MCCC 1A01410T). An emended description of the genus Ottowia is also proposed.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 265-271 ◽  
Author(s):  
M. S. Switzenbaum ◽  
T. R. Plante ◽  
B. K. Woodworth

A handbook has been written for control of activated sludge bulking for wastewater treatment plant operators in Massachusetts. In order to demonstrate the principles described in the handbook for filamentous organism identification and subsequent selective control, six Massachusetts activated sludge plants experiencing bulking problems were investigated. In addition, a survey was conducted to determine the extent of the filamentous bulking problem in Massachusetts. Dominant filamentous organisms in the aeration tank mixed liquor were identified to determine the probable cause of bulking problems. Plant data and operating conditions were also studied to verify the organism-cause relationship. Based on the sample and data analysis, selective control strategies were suggested to the plant operator to control or eliminate the bulking problem.


2020 ◽  
Vol 15 (1) ◽  
pp. 110-116
Author(s):  
Abraha Kahsay Weldemariam ◽  

High chromium concentration is threatening to the environment, since it is persistent and non-biodegradable pollutant while introduced once to our planet. Bioaccumulation capacity of chromium has carcinogenic potential to human beings. To minimize the risk of chromium bioaccumulation, the study was conducted in Wukro irrigation fields. 54 plants, 24 water and 18 soil samples were collected in triplication from the selected points of upstream, treatment plant and downstream of the Sheba leather industry. Samples were transported to advanced laboratory for chromium analysis and results were analysed by R-software. Downstream vegetable samples were measured higher chromium bioaccumulation compared to the upstream sites. Highest chromium concentration was recorded in rood edible vegetables, and the lowest was measured in fruit edible vegetables. Chromium concentration was significantly different between the upstream and downstream vegetables, water and soil samples at p<0.01, p<0.05 and p < 0.001 respectively. The chromium bioaccumulation order were root edible > leaf edible > fruit edible vegetables. Environmental laws have to be strictly enforced and further researches are recommended.


2013 ◽  
Vol 1 (1) ◽  
pp. 47-53

Samples were taken from Metamorphosis/Attica combined treatment plant for municipal wastewater and septage, which treats about 12000 m3 d-1 of municipal wastewater and 8000 m3 d-1 of septage, and analyzed for solids, COD, ammonia, nitrate, orthophosphate, polyphosphate and total phosphorus. Ammonia is almost completely eliminated within the plant. Orthophosphates show a removal of about 28%, while total phosphorus is removed by about 15%. The mean value of the ratio (phosphorus eliminated)/(COD eliminated) in mg g-1 is 8. Assuming suspended-growth nitrification and denitrification kinetics as proposed in literature, the percentage of nitrifiers in the activated sludge population is estimated at 1.1%. Assuming that phosphorus removal in the aeration tank is proportional to cell formation, which in turn is proportional to substrate elimination, the phosphorus content of the activated sludge is estimated at 0.031 gP (gVSS)-1.


2013 ◽  
Vol 8 (1) ◽  
pp. 1-8

Successful start-up of a full-scale wastewater treatment plant (WWTP) is a key issue for the succeeding operation of WWTP on the one hand and the nutritious phosphorus removal is of great concern on the other. After the construction of Mudanjiang WWTP with a flow rate of 100,000 m3 d-1 in Heilongjiang Province of China, a novel way of start-up through feeding wastewater continuously into the system was attempted against the conventional start-up method of inoculating activated sludge in the aeration tank by feeding wastewater intermittently. Activated sludge was cultivated and proliferated in the aeration tanks instead of dosing acclimated sludge from other source. After one-month’s start-up operation, MLSS, SV and SVI increased to 2.5 kg m-3, 30% and nearly 80% respectively, which indicated that quick and simple start-up had been achieved. After successful start-up, an investigation into phosphorus removal was conducted with the emphasis on influencing factors such as ORP and NOx-N concentration etc. When the aeration tank was switched from aerobic to anaerobic mode, phosphorus removal efficiency of 80% could be realized within the whole treatment system. Experimental results revealed that an ORP of -140 mV and NOX-N of 2 mg l-1 were critical for the anaerobic phosphorus release, and DO in the range of 1.7-2.5 mg l-1, BOD5/TP of 20-30 and SVI of 70~80 as well as SRT of 5 days were the optimal phosphorus removal conditions for the aeration tanks.


1992 ◽  
Vol 25 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Y. H. Yu ◽  
K. S. L. Lo

Kwei-Shan Wastewater Treatment Plant is the second oldest treatment plant ever designed and operated in Taiwan, to treat the combined industrial wastewater collected from various kinds of factories located in Kwei-Shan Industrial Park. From the beginning the treatment plant has been suffering from influents containing a spectrum of various pollutants harmful to the activated-sludge system of the plant. Extreme pH measurements (1.4-12.0), jumpy organic contents (COD 104-6660 mg/l), high metal concentrations (Cu up to 19 mg/l, Zn up to 37 mg/l), and high grease concentrations (up to 470 mg/l) were unbelievably found in tne plant influents, while a traditional plain primary settling tank was the only shield to protect the aeration basin from damage. In a dilemma like this, a pilot-plant study was undertaken to save the efficiency of the existing biological treatment plant from those various fatal influent constituents. A flow equalization tank and a chemical treatment unit were first built to damp out pH and COD variations, Ca(OH)2 was added to remove the toxic metals as well as part of the grease. The effluent after the above treatment was then neutralized and sent to the downscaled activated sludge system containing one aeration tank and one settling tank. The results indicated that equalization and chemical precipitation by using the existing space of the roughing filter and the sedimentation tank could produce much safer influents to the activated sludge system.


1997 ◽  
Vol 36 (4) ◽  
pp. 57-68 ◽  
Author(s):  
A. Bidault ◽  
F. Clauss ◽  
D. Helaine ◽  
C. Balavoine

The quality of the effluent from a waste water treatment plant using the activated sludge process depends upon the bacteria flocculation efficiency. Intensive research work has been devoted to understanding flocculation phenomena and to correct disorders. The addition of very fine but dense talc particles to the aeration tank immediately improves floc formation and densifies the new flocs created. In the longer term, the fine talc particles improve floc structuration and form stable and strong flocs. This has been demonstrated by running a modified activated sludge through the high shear strength of pumps and hydrocyclones. These fine talc particles offer a solution to solve floc settleability problems which so frequently arise when biological disorders appear in waste water treatment plants. Two practical cases are presented.


Sign in / Sign up

Export Citation Format

Share Document