Analysis of the Multi-Tooth Meshing Effect of Three-Ring Gear Reducer

2012 ◽  
Vol 214 ◽  
pp. 87-91
Author(s):  
Yuan Li ◽  
Chen Zhu

Three-ring reducer is a type of epicyclic gear drive with small tooth number difference and internal gear. It is different from other gear transmission, that the load shearing factor of multi tooth contact is much smaller. On the basis of analyses of geometry, tooth deformation and manufacturing errors, a mathematical model which describes the state of multi tooth contact and the load distribution characteristics of tooth was developed. The multi- tooth meshing effect of the three- ring gear reducer is studied used the finite element method and ANSYS finite element software. While three- ring gear reducer is running, the number of teeth contacted simultaneously, their load distribution characteristics and the von Mises stress change are gained.

2012 ◽  
Vol 155-156 ◽  
pp. 531-534
Author(s):  
Yuan Li ◽  
Chen Zhu

Three-ring reducer is a type of epicyclic gear drive with small tooth number difference and internal gear. It is different from other gear transmission, that the load shearing factor of multi tooth contact is much smaller. On the basis of analyses of geometry, tooth deformation and manufacturing errors, a mathematical model which describes the state of multi tooth contact and the load distribution characteristics of tooth was developed. The multi- tooth meshing effect of the three- ring gear reducer is studied used the finite element method and ANSYS finite element software. While three- ring gear reducer is running, the number of teeth contacted simultaneously, their load distribution characteristics and the von Mises stress change are gained.


2014 ◽  
Vol 912-914 ◽  
pp. 589-592
Author(s):  
Jin Ling Wang

The design of cold punching mould CAD/CAM and the combination of CAE analysis can advance analysis of stamping process program, eventually get ideal stamping parameters, realize design automation, save resources and reduce dependence on experience, reduce the demand for skilled workers. This paper, by using nonlinear dynamic finite element software ANSYS/ls-dyna continuous function, simulation of sheet metal forming process and unloading plate deformation, forming process, at any time throughout the von mises stress nephogram should rebound and strain values and unloading plate material as a result, analysis help us better understand the changes of the internal material sheet metal stamping process.


2010 ◽  
Vol 452-453 ◽  
pp. 541-544 ◽  
Author(s):  
Yu Pu Song ◽  
Han Yong Liu

This work presents a study of a fatigue test and a finite element analysis on an arch bridge stainless steel suspender with threaded connections. A suspender which had a diameter of 70mm was tested under axial tensile loads range from 430kN to 700kN. The suspender was sudden failure from the thread root of the first loaded tooth in the pin after 1546609 cycles. Then, a two-dimensional axisymmetric modeling ignoring the helix angle of the thread was established with finite element software ANSYS to perform a stress analysis of the threaded connection. The stress concentration factors (SCFs) at the root of the teeth of pin were investigated under the applied external loading. The conclusive results had been drawn from the analysis including the location and the value of maximum SCF in the pin. Finally, the location and the value of the maximum von Mises stress were given. The results showed that the location of the fracture surface was consistent with the location of the maximum von Mises stress.


2019 ◽  
Vol 43 (4) ◽  
pp. 526-534
Author(s):  
Manbodh Kumar Das ◽  
Shibayan Sarkar ◽  
Bhanwar Singh Choudhary

Dragline teeth are used to dig overburden rocks and fill the bucket by its action in surface mining. Thus, these teeth are very important for a better performance of the dragline. In the present investigation, efforts were made to determine the failure zone within the teeth through modeling, using the finite element software ANSYS workbench. The maximum deformation and maximum von-Mises stress were 0.286 mm and 801.38 MPa, respectively. From fatigue analysis, the minimum tool life was 24 540 cycle and the minimum factor of safety was 0.1 at the tip of the tool. Beyond the cutting edge (tip), the factor of safety was greater than 1.13. Finite element analysis was extended by varying the working load on the edge of the tool (68–86 tonnes) as well as the cutting angle (30°–36°). It was found that if the working load was increased, both corresponding maximum deformation and maximum von-Mises stress were increased, while the factor of safety was decreased. In the scanning electron microscopy analysis, wear phenomena such as rock intermixed, fracture of WC-grain, oxidized WC-grain, plastic deformation, cavity formation, cracking, and crushing were visible at magnification of 1000×.


2020 ◽  
Vol 7 (4) ◽  
pp. 142
Author(s):  
Andrea Fabra Rivera ◽  
Frederico de Castro Magalhães ◽  
Amalia Moreno ◽  
Juan Campos Rubio

Frequently, the oral cavity area can be affected by different diseases, so the patient needs to be submitted to surgery to remove a specific region of the mandibular. A complete or partial discontinuity of the mandibular bone can cause direct or indirect forces variations during the mastication. The dental prosthesis is an alternative to generate an aesthetic or functional solution for oral cavity lesions. However, they can be wrongly designed, or they can lose the adjustment during their useful life, deteriorating the patient’s condition. In this work, the influence of the fixation components position for a dental prosthesis will be studied based on the finite element method. By means, it is possible to determine the area of the highest stress concentration generated on the mandibular structure. The temporomandibular image obtained by computational tomography was used as a 3D graphic whole model because in the medical area the morphological factors are extremely important. Vertical loads of 50, 100, 150 and 200 N were applied in three different regions: in the whole buccal cavity, simultaneously in the left and right laterals and only in the right lateral, to determine the values of von Mises stress in the mandible. These results were compared between three finite element software packages (Ansys®, SolidWorks® and Inventor®) and a meshless software (SimSolid®). They showed similar behaviors in the highest mechanical stress concentration in the same regions. Regarding the stress values, the percentage error between each software package was less than 10%. The use of SimSolid® software (meshless) proved to be better at identifying the higher stress generated by the dental prosthesis in the facial skeleton, so its computational efficiency, due to its geometric complexity, was highlighted.


2011 ◽  
Vol 704-705 ◽  
pp. 1451-1457
Author(s):  
Lin Lin Luo ◽  
Da Sen Bi ◽  
Yan Bi ◽  
Liang Chu ◽  
Xu Ma ◽  
...  

Bending process is one of the important methods to form thick hull plate, whose accuracy is directly related to the quality of hull plate forming.In this paper, bending process of thick hull plate is simulated by using finite element software ANSYS, and some simulation results on bending deformation of thick hull plate such as the deformation of meshes in deformation zone, the distributions of the Von Mises stress and effective strain are obtained.


Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.


2020 ◽  
Vol 1 (1) ◽  
pp. 93-102
Author(s):  
Carsten Strzalka ◽  
◽  
Manfred Zehn ◽  

For the analysis of structural components, the finite element method (FEM) has become the most widely applied tool for numerical stress- and subsequent durability analyses. In industrial application advanced FE-models result in high numbers of degrees of freedom, making dynamic analyses time-consuming and expensive. As detailed finite element models are necessary for accurate stress results, the resulting data and connected numerical effort from dynamic stress analysis can be high. For the reduction of that effort, sophisticated methods have been developed to limit numerical calculations and processing of data to only small fractions of the global model. Therefore, detailed knowledge of the position of a component’s highly stressed areas is of great advantage for any present or subsequent analysis steps. In this paper an efficient method for the a priori detection of highly stressed areas of force-excited components is presented, based on modal stress superposition. As the component’s dynamic response and corresponding stress is always a function of its excitation, special attention is paid to the influence of the loading position. Based on the frequency domain solution of the modally decoupled equations of motion, a coefficient for a priori weighted superposition of modal von Mises stress fields is developed and validated on a simply supported cantilever beam structure with variable loading positions. The proposed approach is then applied to a simplified industrial model of a twist beam rear axle.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 301
Author(s):  
Jiaqi Chen ◽  
Hao Wang ◽  
Milad Salemi ◽  
Perumalsamy N. Balaguru

Carbon fiber reinforced polymer (CFRP) matrix composite overwrap repair systems have been introduced and accepted as an alternative repair system for steel pipeline. This paper aimed to evaluate the mechanical behavior of damaged steel pipeline with CFRP repair using finite element (FE) analysis. Two different repair strategies, namely wrap repair and patch repair, were considered. The mechanical responses of pipeline with the composite repair system under the maximum allowable operating pressure (MAOP) was analyzed using the validated FE models. The design parameters of the CFRP repair system were analyzed, including patch/wrap size and thickness, defect size, interface bonding, and the material properties of the infill material. The results show that both the stress in the pipe wall and CFRP could be reduced by using a thicker CFRP. With the increase in patch size in the hoop direction, the maximum von Mises stress in the pipe wall generally decreased as the maximum hoop stress in the CFRP increased. The reinforcement of the CFRP repair system could be enhanced by using infill material with a higher elastic modulus. The CFRP patch tended to cause higher interface shear stress than CFRP wrap, but the shear stress could be reduced by using a thicker CFRP. Compared with the fully bonded condition, the frictional interface causes a decrease in hoop stress in the CFRP but an increase in von Mises stress in the steel. The study results indicate the feasibility of composite repair for damaged steel pipeline.


2021 ◽  
Vol 11 (6) ◽  
pp. 2547 ◽  
Author(s):  
Carlo Prati ◽  
João Paulo Mendes Tribst ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Alexandre Luiz Souto Borges ◽  
Maurizio Ventre ◽  
...  

The aim of the present investigation was to calculate the stress distribution generated in the root dentine canal during mechanical rotation of five different NiTi endodontic instruments by means of a finite element analysis (FEA). Two conventional alloy NiTi instruments F360 25/04 and F6 Skytaper 25/06, in comparison to three heat treated alloys NiTI Hyflex CM 25/04, Protaper Next 25/06 and One Curve 25/06 were considered and analyzed. The instruments’ flexibility (reaction force) and geometrical features (cross section, conicity) were previously investigated. For each instrument, dentine root canals with two different elastic moduli(18 and 42 GPa) were simulated with defined apical ratios. Ten different CAD instrument models were created and their mechanical behaviors were analyzed by a 3D-FEA. Static structural analyses were performed with a non-failure condition, since a linear elastic behavior was assumed for all components. All the instruments generated a stress area concentration in correspondence to the root canal curvature at approx. 7 mm from the apex. The maximum values were found when instruments were analyzed in the highest elastic modulus dentine canal. Strain and von Mises stress patterns showed a higher concentration in the first part of curved radius of all the instruments. Conventional Ni-Ti endodontic instruments demonstrated higher stress magnitudes, regardless of the conicity of 4% and 6%, and they showed the highest von Mises stress values in sound, as well as in mineralized dentine canals. Heat-treated endodontic instruments with higher flexibility values showed a reduced stress concentration map. Hyflex CM 25/04 displayed the lowest von Mises stress values of, respectively, 35.73 and 44.30 GPa for sound and mineralized dentine. The mechanical behavior of all rotary endodontic instruments was influenced by the different elastic moduli and by the dentine canal rigidity.


Sign in / Sign up

Export Citation Format

Share Document