Synthesis and Evaluation of Anionic Gemini Surfactant

2012 ◽  
Vol 217-219 ◽  
pp. 1363-1367 ◽  
Author(s):  
Zhen Zhong Fan ◽  
Xin Liu ◽  
Fei Wang ◽  
Yu Sheng Zhang

Abstract. Take the lauric acid, the ethylene diamine, the chloroacetic acid, the soda ash as raw material synthesized a new type of Anionic Gemini surfactants-N, N'-double lauroyl ethylene diamine two sodium acetate, The properties of the product were characterized, and the physical and chemical properties were determined. The experimental results can be seen that the anionic Gemini surfactants can greatly reduce the oil/water interface tension, and it has good viscosity properties, Thus deduced that the Gemini surfactants is better than the ordinary surfactant better table (world) surface activity, Can be used in the tertiary oil recovery field.

Author(s):  
Guili Ge ◽  
Lin Li ◽  
Dan Wang ◽  
Mingjian Chen ◽  
Zhaoyang Zeng ◽  
...  

Carbon dots (CDs) are a new type of carbon nanomaterial that have unique physical and chemical properties, good biocompatibility, low toxicity, easy surface functionalization, making them widely used in biological...


A so far unknown chlorophyll has been isolated from several strains of brown-coloured chlorobacteria and has been designated bacteriochlorophyll e . Comparison of the physical and chemical properties of the new chlorophyll with those of bacteriochlorophylls c and d ( Chlorbium chlorophylls) allows one to deduce its structural formula. The stereochemistry of the hydroxyethyl side chain of bacteriochlorophylls c, d and e can be determined by a modified Horeau analysis of these pigments, and the results thus obtained are in agreement with those derived from oxidative degradation experiments. The latter method allows one furthermore to prove the structure of bacteriochlorophylls c and d proposed by Holt, and to establish the absolute configuration at carbon atoms 7 and 8. The presence of a δ-methylsubstituent in bacteriochlorophylls c and e is unambiguously demonstrated by nuclear magnetic resonance.


2019 ◽  
Vol 944 ◽  
pp. 1144-1151
Author(s):  
Lin Yan Zhao ◽  
Yue Gang Shen ◽  
You Shu Fan ◽  
Li Wen Ma ◽  
Xiao Li Xi

As a cheap and stable transition metal oxide, tungsten trioxide (WO3) has received extensive attentions due to superior physical and chemical properties that could be used in electronic devices, lithium-ion batteries, gas sensors, dye sensitized solar cells, catalysts. In this study, the well-designed 1D architecture of nanowires and nanorods was successfully synthesized via a simple and facile solvethermal method with no template or additives. It is found that both solvent type and concentration of W raw material can affect the size and morphology of WO3significantly in a regular way. Different products showed distinct photocatalytic activities during the processing of degradation methylene blue under visible light, and the underlying reasons for the different photocatalytic activities were discussed.


1932 ◽  
Vol 5 (2) ◽  
pp. 110-116
Author(s):  
F. Kirchhof

Abstract The application of the long-known Friedel-Crafts reaction to rubber hydrocarbons led to a new type of condensation products which may be called provisionally aral cyclorubbers (“benzylidene rubbers”), since their benzylidene groups are probably condensed with the polyprene skeleton to cyclic systems. It would not have been foreseen without further work that rubber would form this type of condensation product with aral halides in the presence of aluminum chloride, since on the one hand benzyl chloride is known to form, by the action of aluminum chloride in the Friedel-Crafts reaction, an amorphous, apparently high molecular hydrocarbon of the empirical composition (C7H6)x, and on the other hand rubber in solution is transformed by the metal chlorides, especially aluminum chloride, into amorphous polycyclorubbers. Under definite conditions of condensation with aluminum chloride aral groups are combined with the skeleton of the rubber hydrocarbon with the formation of white to yellowish amorphous bodies which contain, in addition to a small proportion of organically combined chlorine, only carbon and hydrogen, and are therefore to be regarded as hydrocarbons. In their physical and chemical properties these substances resemble the already known amorphous substance of the empirical formula (C7H6)x, which doubtless is polybenzylidene, probably hexabenzylidene.


Author(s):  
Juliany Barbosa de Pinho ◽  
Aloisio Bianchini ◽  
Pedro Silvério Xavier Pereira ◽  
Letycia Cunha Nunes ◽  
Rodrigo Fernandes Daros ◽  
...  

From the pyrolysis process, biochar is a carbon rich and recalcitrant organic material with potential for long term carbon sequestration because of its aromatic structure. However, the physical and chemical properties of the biochar vary due to the diversity of raw material and the conditions of production. The present study aimed to evaluate the biochar from the sugarcane bagasse at different temperatures and under two conditions of pyrolysis. The biochar was produced at two final temperatures 200°C (1 hour); 250°C (1h) and 250°C (2h), with pyrolysis of an oxidizing and non-oxidizing atmosphere for both. PH, cation exchange capacity (CTC), carbon content (C), Nitrogen (N), hydrogen (H), H:C, C:N and ash ratios were evaluated. The contents of C, H, N and the atomic ratios H:C and C:N were higher in Biochar produced in a non-oxidizing atmosphere (BNO). However, the content of ash, pH and CTC were higher in Biochar produced in oxidizing atmospheres (BO). One can conclude the direct influence of the pyrolysis condition.


In article the possibility of receiving the metallized concentrates from ferriferous ores with the low content of iron, for the purpose of preparation them to metallurgical processing is considered. It is shown that the following factors have significant effect on effectiveness of process of receiving the metallized concentrates: composition of ore, physical and chemical properties of ore, possibility of receiving pellets, type and consumption of reducer, etc.


2019 ◽  
Vol 62 (1) ◽  
pp. 8-14 ◽  
Author(s):  
V. A. Martirosyan ◽  
M. E. Sasuntsyan

In connection with the development of copper and molybdenum production in Armenia, it becomes necessary to develop a technology for processing the slags of the functioning metallurgical plants to extract valuable metals from these slags. It concerns the copper slags of Alaverdi Copper-Smelting Plant with a content of FeO ~50  % and the molybdenum slags of Yerevan “Pure Iron” Plant with a content of SiO2 ~80  %. These slags are obtained at high temperatures (with FeO·SiO2 , CaO·SiO2 , Fe3 O4 ) and, therefore, they are less active to be used later. Meanwhile, the mentioned slags are rich in iron and silicon oxides and can serve as a cheap raw material for producing iron silicides. The iron silicides can be used in micro- and nanoelectronics, as well as in metallurgy as an alloying additive in the production of steels of special physical and chemical properties. The production of such valuable silicides from an inexpensive raw material is important for Republic of Armenia and is of not only economic, but also ecological significance. To obtain iron silicides, a method of combined aluminothermal reduction of primarily mechanoactivated copper and molybdenum slags is proposed. The preliminary mechanoactivation allows to purposefully affect the structure of the reaction mixture and parameters of the self-propagating high-temperature synthesis (SHS), thus ensuring the possibility of regulating the structure and phase composition of the synthesized silicides. This work considers issues on the impact of transformation and phase formation on the morphology of slags of copper and molybdenum production in the functioning Armenian metallurgical plants at mechanochemical activation by the method of fine grinding in a vibromill. It is shown that at fine grinding (up to 10  mcm), the slags, containing small-reactivity complex compounds of iron and silicon (fayalite, magnetite, quarzite) undergo profound chemical changes, transforming into amorphous oxides. The obtained activated oxides can serve as a raw material for producing iron- and silicon-containing alloys – iron silicides.


2020 ◽  
Vol 50 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Tatiana Tanashkina ◽  
Anastasia Peregoedova ◽  
Anna Semenyuta ◽  
Margarita Boyarova

Introduction. The production of gluten-free food products, including alcohol-free beverages, is an urgent task for Russian food industry. Buckwheat malt has a great raw material potential, because it consists rutin, which can give the final product some useful functional properties. Aromatic raw materials improve the sensory characteristics of beverages and increase their nutritional value. Study objects and methods. Kvass is a traditional Russian bread juice. To prepare gluten-free kvass, we used light and scalding buckwheat malt and water infusions of barberry, juniper, leaves of garden currant, and lemon balm grass. The wort was prepared by infusion and fermented with bottom beer yeast Saflager W-34/70. Then it was blended with infusions of plant materials. Sensory and physical and chemical properties of kvass were determined by standard methods. Antioxidant activity of the beverages was assessed by using DPPH radical scavenging method. Results and discussion. All samples met the state standard requirements for kvass by sensory, physical, and chemical characteristics. The drinks obtained from the scalding malt were well-fermented and achieved better tasting ratings compared to those from the light malt. The control sample, which contained no aromatic raw materials, received the lowest scores for taste and aroma. The kvass blended with infusions of barberry and garden currant had the best results. The infusions increased the shelf life of the kvass from 7 days (control) to 12 (barberry), 14 (juniper), and 16 (currant). All samples of kvass demonstrated antioxidant activity, the beverage with infusion of garden currant leaves showing the best results (≤ 80%). Antiradical activity was established for the samples blended with barberry and currant infusions. Conclusion. light and scalding buckwheat malt can be used to prepare gluten-free kvass. Blending buckwheat kvass with infusions of aromatic raw materials increased the shelf life of the beverages, improved their taste, aroma, and antioxidant activity (except the sample with infusions of juniper), and gave them antiradical properties.


Recycling ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 8 ◽  
Author(s):  
Jonathan Cardoso ◽  
Helder Gomes ◽  
Paulo Brito

The main environmental issue associated with compost production is the production of a liquid leachate. Leachate from municipal wastes contains carbon, nitrogen, phosphorus, potassium and trace elements that can be used as nutrients by plants. The advantages of the use of organic wastes such as compost leachate as fertilizers are evident. Their use would reduce the consumption of commercial fertilizers, which need, with their production, high cost and energy. This work aims to determine the physical and chemical properties of a specific leachate with a variable composition, collected from the composting line of a mechanical and biological treatment facility. The goal is to assess if the leachates can be used as a potential source for fertilizers, and thus develop and design a sequence of processes which could effectively convert the leachates to commercial fertilizers according to the requirements of the proposal of regulation of the European Parliament of 2016 for fertilizers. Preliminary results show that the leachate samples qualitatively meet the requirements established for the composition of commercial fertilizers, especially organo-mineral fertilizers. Furthermore, there is no production cost of leachate as a raw material. The results show that the leachate is characterized by manageable concentrations of heavy metals which can be removed by adsorption processes, and it presents suitable amounts of organic carbon after a water removal procedure. However, the establishment of the conditions for suitable conversion processes are still under investigation considering the high composition variability due to factors like storage and environmental conditions.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4212 ◽  
Author(s):  
Sergey Reshetnikov ◽  
Irina Kurzina ◽  
Alesia Livanova ◽  
Eugene Meshcheryakov ◽  
Lyubov Isupova

The effect of alkali metal (Li, Na, K) incorporation on the morphology and water vapor uptake properties of mesoporous Al2O3 has been studied. The modification of the raw material, pseudoboehmite, represented a mixture of low-temperature phases (γ + η + χ)-Al2O3, and has been done at low-temperature that does not change the phase ratio. A decrease in specific surface values and an average pores size increase were observed as a result of the introduction of metal cations by impregnation and subsequent thermal treatment. The influence of the content of the modifying metal on the adsorption ability of the obtained samples in relation to water vapours has been studied. It has been established that alkaline modification Al2O3 with the lithium cations did not result in adsorption ability improvement, whereas samples that were modified with sodium or potassium in the amount of 1.2 weight % and 2.6 weight %, respectively, possess a higher equilibrium capacity (by ~40%), as compared to that of the initial sample (Al2O3), and a sufficiently high adsorption rate.


Sign in / Sign up

Export Citation Format

Share Document