scholarly journals Analysis of the Strain and Stress Fields of Cardboard Box during Compression by 3D Digital Image Correlation

2010 ◽  
Vol 24-25 ◽  
pp. 103-108 ◽  
Author(s):  
Jeremie Viguié ◽  
P.J.J. Dumont ◽  
P. Vacher ◽  
Laurent Orgéas ◽  
I. Desloges ◽  
...  

Corrugated boards with small flutes appear as good alternatives to replace packaging folding boards or plastic materials due their small thickness, possibility of easy recycling and biodegradability. Boxes made up of these materials have to withstand significant compressive loading conditions during transport and storage. In order to evaluate their structural performance, the box compression test is the most currently performed experiment. It consists in compressing an empty container between two parallel plates at constant velocity. Usually it is observed that buckling phenomena are localized in the box panels, which bulge out during compression [1]. At the maximum recorded compression force, the deformation localises around the box corners where creases nucleate and propagate. This maximum force is defined as the quasi-static compression strength of the box. The prediction of such strength is the main topic of interest of past and current research works. For example, the box compression behaviour of boxes was studied by Mc Kee et al. [2] and Urbanik [3], who defined semi-empirical formula to predict the box compression strength, as well as by Beldie et al. [4] and Biancolini et al. [5] by finite element simulations. But comparisons of these models with experimental results remain rather scarce and limited.

2016 ◽  
Vol 821 ◽  
pp. 428-434
Author(s):  
Petr Koudelka ◽  
Michaela Neuhauserova ◽  
Tomáš Fíla ◽  
Daniel Kytýř

In this work parametric modelling was utilized to design and produce two types of porous microarchitectures with auxetic compressive properties suitable for deformation energy mitigation applications such as blast and bullet protection. The samples were directly produced from acrylic material using a high resolution 3D printer and their compressive mechanical characteristics were tested. Two different structures exhibiting in-plane negative strain dependent Poisson’s ratio were selected for the analysis: i) two-dimensional inverted (re-entrant) honeycomb and ii) two-dimensional cut missing-rib. Stress-strain relationships were established from a set of quasi-static compression experiments where the strain fields were evaluated using digital image correlation applied to measure the full-field displacements on the samples' surface. From the displacement fields true strain – true stress curves were derived for each sample and relative elastic moduli were evaluated.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3177
Author(s):  
Evelio Teijón-López-Zuazo ◽  
Jorge López-Rebollo ◽  
Luis Javier Sánchez-Aparicio ◽  
Roberto Garcia-Martín ◽  
Diego Gonzalez-Aguilera

This work aims to investigate different predictive models for estimating the unconfined compressive strength and the maximum peak strain of non-structural recycled concretes made up by ceramic and concrete wastes. The extensive experimental campaign carried out during this research includes granulometric analysis, physical and chemical analysis, and compression tests along with the use of the 3D digital image correlation as a method to estimate the maximum peak strain. The results obtained show that it is possible to accurately estimate the unconfined compressive strength for both types of concretes, as well as the maximum peak strain of concretes made up by ceramic waste. The peak strain for mixtures with concrete waste shows lower correlation values.


2021 ◽  
pp. 136943322110073
Author(s):  
Erdem Selver ◽  
Gaye Kaya ◽  
Hussein Dalfi

This study aims to enhance the compressive properties of sandwich composites containing extruded polystyrene (XPS) foam core and glass or carbon face materials by using carbon/vinyl ester and glass/vinyl ester composite Z-pins. The composite pins were inserted into foam cores at two different densities (15 and 30 mm). Compression test results showed that compressive strength, modulus and loads of the sandwich composites significantly increased after using composite Z-pins. Sandwich composites with 15 mm pin densities exhibited higher compressive properties than that of 30 mm pin densities. The pin type played a critical role whilst carbon pin reinforced sandwich composites had higher compressive properties compared to glass pin reinforced sandwich composites. Finite element analysis (FE) using Abaqus software has been established in this study to verify the experimental results. Experimental and numerical results based on the capabilities of the sandwich composites to capture the mechanical behaviour and the damage failure modes were conducted and showed a good agreement between them.


Fractals ◽  
2021 ◽  
Author(s):  
WEI CAI ◽  
PING WANG

In this paper, a power-law strain-dependent variable order is first incorporated into the fractional constitutive model and employed to describe mechanical behaviors of aluminum foams under quasi-static compression and tension. Comparative results illustrate that power-law strain-dependent variable order is capable of better describing stress–strain responses compared with the traditional linear one. The evolution of fractional order along with the porosities or relative densities can be well qualitatively interpreted by its physical meaning. Furthermore, the model is also extended to characterize the impact behaviors under large constant strain rates. It is observed that fractional model with sinusoidal variable order agrees well with the experimental data of aluminum foams with impact and non-impact surfaces.


Sign in / Sign up

Export Citation Format

Share Document