Novel Scanning Immersion Lithography for 3D Microfabrication

2012 ◽  
Vol 249-250 ◽  
pp. 747-751
Author(s):  
Yi Cheng Chen ◽  
Shi Chang Tseng

We propose the first time combining the merit of scanning and immersion lithography to fabricate 3D microstructure in this study. Via applying a matching liquid to reduce the diffraction error, the gap between the mask/resist becomes more tolerable. In addition, the liquid also act as a lubricant and a buffer for smooth movement of the mask/substrate. These advantages will benefit the performance of scanning lithography technique. The experimental results show that the large-area, 3D microstructure with excellent surface quality (Ravg<10 nm) can be successively fabricated based on this method. Besides, 3D microstructures with various geometries and functionalities can be generated by altering the shape of the mask pattern, or changing the scanning directions. The proposed SIL technique seems to be a promising way for fabricating 3D microstructure for optical applications.

2009 ◽  
Vol 615-617 ◽  
pp. 77-80 ◽  
Author(s):  
Bernd Thomas ◽  
Christian Hecht ◽  
Birgit Kallinger

In this paper we present results on the growth of low-doped thick epitaxial layers on 4° off-oriented 4H-SiC using a commercially available hot-wall multi-wafer CVD system. For the first time we show results of a low-doped full-loaded 73” run on 4° off-oriented substrates with a layer thickness of more than 70 µm. The target doping concentration of 1.2×1015 cm-3 is suitable for blocking voltages > 6 kV. Results on doping, thickness and wafer-to-wafer homogeneities are shown. The surface quality of the grown layers was characterized by AFM. The density of different types of dislocations was determined by Defect Selective Etching.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Denis V. Novitsky ◽  
Dmitry Lyakhov ◽  
Dominik Michels ◽  
Dmitrii Redka ◽  
Alexander A. Pavlov ◽  
...  

AbstractUnique and flexible properties of non-Hermitian photonic systems attract ever-increasing attention via delivering a whole bunch of novel optical effects and allowing for efficient tuning light-matter interactions on nano- and microscales. Together with an increasing demand for the fast and spatially compact methods of light governing, this peculiar approach paves a broad avenue to novel optical applications. Here, unifying the approaches of disordered metamaterials and non-Hermitian photonics, we propose a conceptually new and simple architecture driven by disordered loss-gain multilayers and, therefore, providing a powerful tool to control both the passage time and the wave-front shape of incident light with different switching times. For the first time we show the possibility to switch on and off kink formation by changing the level of disorder in the case of adiabatically raising wave fronts. At the same time, we deliver flexible tuning of the output intensity by using the nonlinear effect of loss and gain saturation. Since the disorder strength in our system can be conveniently controlled with the power of the external pump, our approach can be considered as a basis for different active photonic devices.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1736
Author(s):  
Zengchong Yang ◽  
Xiucheng Liu ◽  
Bin Wu ◽  
Ren Liu

Previous studies on Lamb wave touchscreen (LWT) were carried out based on the assumption that the unknown touch had the consistent parameters with acoustic fingerprints in the reference database. The adaptability of LWT to the variations in touch force and touch area was investigated in this study for the first time. The automatic collection of the databases of acoustic fingerprints was realized with an experimental prototype of LWT employing three pairs of transmitter–receivers. The self-adaptive updated weight coefficient of the used transmitter–receiver pairs was employed to successfully improve the accuracy of the localization model established based on a learning method. The performance of the improved method in locating single- and two-touch actions with the reference database of different parameters was carefully evaluated. The robustness of the LWT to the variation of the touch force varied with the touch area. Moreover, it was feasible to locate touch actions of large area with reference databases of small touch areas as long as the unknown touch and the reference databases met the condition of equivalent averaged stress.


2015 ◽  
Vol 9 (1) ◽  
pp. 1025-1032
Author(s):  
Shi Pengtao ◽  
Li Yan ◽  
Yang Mingshun ◽  
Yao Zimeng

To furthermore optimize the machining parameters and improve the surface quality of the workpieces manufactured by single point incremental forming method, the formation mechanism of the sacle veins on the metal incremental froming workpieces was studied through experiment method. The influence principle of the spindle speed, the feed speed and the material of tip of tools on the length of scale veins was obtained through analyzing the experimental results and building the mathematical model among the length of scale veins were feed speed and spindle speed through measuring the roughness of surfaces and observing the appearance of the forming workpieces. The experimental results showed that, the spindle speed, the feed speed and the material of tool tips have a significant effect on the scale veins formation on the surface of forming workpieces. Therefore, an appropriate group of spindle speed and feed speed can reduce the effect of scale veins on the roughness of single point incremental forming workpieces and furthermore improve the surface quality of forming workpieces.


2011 ◽  
Vol 101-102 ◽  
pp. 909-912
Author(s):  
Guo Ying Zeng ◽  
Deng Feng Zhao

The three-dimensional vibratory strengthening and polishing technology was used to strengthen and polish aeroengine blades with complicated surfaces. At first, the principle of the strengthening and polishing process was introduced, which combined strengthening process with polishing process. Then, the technological parameters influenced on the surface quality were investigated. The principal variables were the media hardness, the frequency and amplitude of the vibration, and duration of the vibratory strengthening and polishing. The optimum parameters were obtained. Experimental results revealed that, after strengthening and polishing, the surface roughness of aeroengine blades was reduced from Ra0.35-0.5μm to Ra0.1-0.12μm, and fatigue strength was increased by approximately 50%.


2018 ◽  
Vol 7 (1) ◽  
pp. 1800426 ◽  
Author(s):  
Young-Mi Bahk ◽  
Dai-Sik Kim ◽  
Hyeong-Ryeol Park

In this chapter, the first micropattern gaseous detector, the microstrip gas counter, invented in 1988 by A. Oed, is presented. It consists of alternating anode and cathode strips with a pitch of less than 1 mm created on a glass surface. It can be considered a two-dimensional version of a multiwire proportional chamber. This was the first time microelectronic technology was applied to manufacturing of gaseous detectors. This pioneering work offers new possibilities for large area planar detectors with small gaps between the anode and the cathode electrodes (less than 0.1 mm). Initially, this detector suffered from several serious problems, such as charging up of the substrate, discharges which destroyed the thin anode strips, etc. However, by efforts of the international RD28 collaboration hosted by CERN, most of them were solved. Although nowadays this detector has very limited applications, its importance was that it triggered a chain of similar developments made by various groups, and these collective efforts finally led to the creation of a new generation of gaseous detectors-micropattern detectors.


2019 ◽  
Vol 9 (22) ◽  
pp. 4775 ◽  
Author(s):  
Osama Saber ◽  
Nagih M. Shaalan ◽  
Aya Osama ◽  
Adil Alshoaibi

The plate-like structure is the most familiar morphology for conventional layered double hydroxides (LDHs) in case their structures consist of divalent and trivalent cations in their layers. In this study, nanofibers and nanoneedles of Co–Si LDHs were prepared for the first time. By the inclusion of zirconium inside the nanolayers of LDH structures, their plates were formed and transformed to nanofibers. These nanofibers were modified by the insertion of titanium to build again plate-like morphology for the LDH structure. This morphology controlling was studied and explained by a dual anions intercalation process. The optical properties of Co–Si LDHs indicated that the incorporation of zirconium within their nanolayers decreased the band gap energy from 4.4 eV to 2.9 eV. Following the same behavior, the insertion of titanium besides zirconium within the nanolayers of Co–Si LDHs caused a further reduction in the band gap energy, which became 2.85 eV. Although there is no data for the optical properties of Co–Si LDHs in the literature, it is interesting to observe the low band gap energy for Co–Si LDHs to become more suitable for optical applications. These results concluded that the reduction of the band gap energy and the formation of nanofibers introduce new optical materials for developing and designing optical nanodevices.


2020 ◽  
Vol 635 ◽  
pp. A185 ◽  
Author(s):  
G. Principe ◽  
G. Migliori ◽  
T. J. Johnson ◽  
F. D’Ammando ◽  
M. Giroletti ◽  
...  

Context. According to radiative models, radio galaxies may produce γ-ray emission from the first stages of their evolution. However, very few such galaxies have been detected by the Fermi Large Area Telescope (LAT) so far. Aims. NGC 3894 is a nearby (z = 0.0108) object that belongs to the class of compact symmetric objects (CSOs, i.e., the most compact and youngest radio galaxies), which is associated with a γ-ray counterpart in the Fourth Fermi-LAT source catalog. Here we present a study of the source in the γ-ray and radio bands aimed at investigating its high-energy emission and assess its young nature. Methods. We analyzed 10.8 years of Fermi-LAT data between 100 MeV and 300 GeV and determined the spectral and variability characteristics of the source. Multi-epoch very long baseline array (VLBA) observations between 5 and 15 GHz over a period of 35years were used to study the radio morphology of NGC 3894 and its evolution. Results. NGC 3894 is detected in γ-rays with a significance >9σ over the full period, and no significant variability has been observed in the γ-ray flux on a yearly time-scale. The spectrum is modeled with a flat power law (Γ = 2.0 ± 0.1) and a flux on the order of 2.2 × 10−9 ph cm−2 s−1. For the first time, the VLBA data allow us to constrain with high precision the apparent velocity of the jet and counter-jet side to be βapp, NW = 0.132 ± 0.004 and βapp, SE = 0.065 ± 0.003, respectively. Conclusions. Fermi-LAT and VLBA results favor the youth scenario for the inner structure of this object, with an estimated dynamical age of 59 ± 5 years. The estimated range of viewing angle (10° < θ <  21°) does not exclude a possible jet-like origin of the γ-ray emission.


2017 ◽  
Vol 26 (10) ◽  
pp. 1750066
Author(s):  
Kosim Olimov ◽  
K. G. Gulamov ◽  
Khusniddin K. Olimov ◽  
Sagdulla L. Lutpullaev ◽  
Vladimir V. Lugovoy ◽  
...  

The partial inelasticity coefficients of baryon fragments of oxygen nuclei and pions were investigated and the full inelasticity coefficient was determined for the first time in [Formula: see text] collisions at [Formula: see text]. The fraction of kinetic energy of incident proton in [Formula: see text] collisions at [Formula: see text] spent on formation of all the baryon fragments and production of charged and neutral pions was found. The experimental results were compared with those obtained in other experiments at high energies. The experimental full inelasticity coefficient in [Formula: see text] collisions at [Formula: see text] was reproduced well by calculations within the framework of Glauber model of multiple scatterings in hadron–nucleus collisions.


Sign in / Sign up

Export Citation Format

Share Document