The Transporting Mechanic of Slurry of Heavy Oil and Sand in Horizontal Wellbore

2012 ◽  
Vol 271-272 ◽  
pp. 641-644
Author(s):  
Deng Sheng Lei ◽  
Xiao Liang Huang ◽  
Chun Bi Xu

It is a special modality of solid-fluid conduit flow for the sand transporting procedure in wellbore. Under the action of heavy oil, because of the difference of the borehole location, the transporting mechanic of sand is not the same. For the vertical wellbore, sand particles are mainly dominated by the drag forces and carried out of the hole; however, for the horizontal wellbore, sand particles are under complex forces and show different flow state. In different flow state, the sand particles are controlled by different forces, the heavy oil’s sand transporting capacity is changed. This paper begins with the analysis of the stress of the sand particles, and deeply analyses the vertical and horizontal wellbore, the stress of sand particles in the heavy oil’s sand mixing flow procedure, and then study the heavy oil’s sand transporting capacity.

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2428 ◽  
Author(s):  
Fei Shen ◽  
Linsong Cheng ◽  
Qiang Sun ◽  
Shijun Huang

Recently, commingling production has been widely used for the development of offshore heavy oil reservoirs with multilayers. However, the differences between layers in terms of reservoir physical properties, oil properties and pressure have always resulted in interlayer interference, which makes it more difficult to evaluate the producing degree of commingled production. Based on the Buckley–Leverett theory, this paper presents two theoretical models, a one-dimensional linear flow model and a planar radial flow model, for water-flooded multilayer reservoirs. Through the models, this paper establishes a dynamic method to evaluate seepage resistance, sweep efficiency and recovery percent and then conducts an analysis with field data. The result indicates the following: (1) the dynamic difference in seepage resistance is an important form of interlayer interference during the commingled production of an offshore multilayer reservoir; (2) the difference between commingled production and separated production is small within a certain range of permeability ratio or viscosity ratio, but separated production should be adopted when the ratio exceeds a certain value.


2018 ◽  
Vol 218 ◽  
pp. 02007
Author(s):  
Wahyudi ◽  
Sela Martasia ◽  
Budi Setiyono ◽  
Iwan Setiawan

Auto-tuning relay feedback is one of the control techniques, which is used to solve the non-linear, long delay time, and disturbance's problems. This control technique is the development of Ziegler-Nichols that can be done automatically without doing system modeling. In this paper, auto-tuning relay feedback is used in the control system response to optimization of Shell Heavy Oil Fractionator (SHOF) system so the output of product composition as expected. SHOF is a distillation column type used to separate crude oil into desired products based on the difference in the boiling point of each product. PI regulators of relay feedback are used to control the valves on the SHOF with three inputs and three outputs that has been decoupled. Based on the tests, the average values of IAE at top end point composition (Y1) obtained with disturbance and no disturbance are 83.17 and 10.933, respectively. At the side end point composition (Y2), the average values of IAE with disturbance and no disturbance are obtained respectively, 336.38 and 42.3467. The average values of IAE at bottom reflux temperature (Y3) with disturbance and no disturbance are obtained 0.15 and 0.13, respectively.


2020 ◽  
Vol 10 (10) ◽  
pp. 3404
Author(s):  
Bing Ji ◽  
Zenggang Zhu ◽  
Shijun Guo ◽  
Si Chen ◽  
Qiaolin Zhu ◽  
...  

An investigation into the aerodynamic characteristics has been presented for a bio-inspired flapping wing aircraft. Firstly, a mechanism has been developed to transform the usual rotation powered by a motor to a combined flapping and pitching motion of the flapping wing. Secondly, an experimental model of the flapping wing aircraft has been built and tested to measure the motion and aerodynamic forces produced by the flapping wing. Thirdly, aerodynamic analysis is carried out based on the measured motion of the flapping wing model using an unsteady aerodynamic model (UAM) and validated by a computational fluid dynamics (CFD) method. The difference of the average lift force between the UAM and CFD method is 1.3%, and the difference between the UAM and experimental results is 18%. In addition, a parametric study is carried out by employing the UAM method to analyze the effect of variations of the pitching angle on the aerodynamic lift and drag forces. According to the study, the pitching amplitude for maximum lift is in the range of 60°~70° as the flight velocity decreases from 5 m/s to 1 m/s during landing.


Author(s):  
Luong Duy Thanh

Measurements of the zeta potential in sandpacks saturated with monovalent electrolytes at six different electrolyte concentrations have been reported. The values we record are classified into two groups based on the magnitude of the zeta potential: group 1 (samples S1 and S2) and group 2 (samples S3 and S4). The measured zeta potential in magnitude in group 1 is much smaller than that in group 2 and in literature at the same electrolyte concentration. The reason for a big variation of the zeta potential between group 1 and group 2 may be due to the difference in technique of making sand particles of different size leading to change of particle surface properties. Consequently, the zeta potential that depends on the surface properties would vary. The results show that there is a gradual decrease in the zeta potential with increase in monovalent electrolyte concentration (from 10−4 M to 10−2 M). Additionally, the empirical expressions between the zeta potential and electrolyte concentration are obtained in this work for both group 1 and group 2. The obtained expression for group 2 is in good agreement with those available in literature. From the experimental data in combination with a theoretical model, the binding constants for Na+ and K+ cations are obtained for the samples of group 2 and they are in the same range reported in literature for silica-based samples. 


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4219
Author(s):  
Hanxue Cao ◽  
Chengcheng Wang ◽  
Junqi Che ◽  
Ziwei Luo ◽  
Luhan Wang ◽  
...  

Air entrapment defects prevent the heat treatment from improving the mechanical properties of die castings, which limits the die casting of high-performance components. The flow pattern of the filling process is complicated and experimental analysis is difficult in thin-walled complex die castings. In this study, we constructed a shock absorption tower to observe in real-time the filling process of pure aluminum and A380 aluminum alloy at different fast injection speeds. The degree of breakup of pure aluminum was larger than that of A380 during the filling process, which caused the porosity of pure aluminum to be greater than that of the A380 at each observation position. Re-Oh diagrams explained the difference in porosity between the two metals. The porosity in different regions was closely related to the flow state of aluminum liquid. In addition to porosity measurements, we specifically analyzed the relationship between the porosity of the flowback zone, the final filling zone, and the near-tail zone of cylinder. At the same injection velocity, the porosity at flowback zone was greater than that at the final filling position, the porosity at final filling position was larger than that at the near-tail zone of cylinder, and the final filling position changed as the injection velocity changed.


SPE Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Jiaxi Gao ◽  
Yuedong Yao ◽  
Dawen Wang ◽  
Hang Tong

Summary Supercritical water has been proved effective in heavy-oil recovery. However, understanding the flow characteristics of supercritical water in the wellbore is still in the early stages. In this paper, using the theory of heat transfer and fluid mechanics and combining that with the physical properties of supercritical water, a heat-transfer model for vertical wellbore injection with supercritical water is established. The influence of heat transfer and the Joule-Thomson effect on the temperature of supercritical water are considered. Results show the following: The predicted values of pressure and temperature are in good agreement with the test values. The apparent pressure of supercritical water at the upper end of the wellbore is lower than the apparent pressure at the lower end. However, the equivalent pressure of supercritical water at the upper end of the wellbore is higher than the equivalent pressure at the lower end. The apparent pressure of supercritical water is affected by three factors: flow direction, overlying pressure, and Joule-Thomsoneffect. The closer to the bottom of the well, the greater the overlying pressure of the supercritical water, resulting in an increase in apparent pressure and the density of the supercritical water. As the injection time for supercritical water increases, the temperature around the upper horizontal wellbore increases.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xingmin Li ◽  
Changchun Chen ◽  
Zhangcong Liu ◽  
Yongbin Wu ◽  
Xiaoxing Shi

Nowadays, extra heavy oil reservoirs in the Orinoco Heavy-Oil-Belt in Venezuela are exploited via cold production process, which present different production performance in well productivity and primary recovery factor. The purpose of this study is to investigate the causes for such differences with the aspect of foamy oil mechanism. Two typical oil samples were adopted from a shallow reservoir in western Junìn region and a middepth reservoir in eastern Carabobo region in the Belt, respectively. A depletion test was conducted using 1D sand-pack with a visualized microscopic flow observation installation for each of the oil samples under simulated reservoir conditions. The production performance, the foamy oil behaviour, and the oil and gas morphology were recorded in real time during the tests. The results indicated that the shallow heavy oil reservoir in the Belt presents a weaker foamy oil phenomenon when compared with the middepth one; its foamy oil behaviour lasts a shorter duration with a smaller scope, with bigger bubble size and less bubble density. The difference in foamy oil behaviour for those two types of heavy oil reservoir is caused by the difference in reservoir pressure, solution GOR, asphaltene content, etc. Cold production presents obvious features of three stages under the action of strong foamy oil displacement mechanism for the middepth heavy oil reservoir, which could achieve a more favourable production performance. In the contrary, no such obvious production characteristics for the shallow heavy oil reservoir are observed due to weaker foamy oil behaviour, and its primary recovery factor is 9.38 percent point lower than which of the middle heavy oil reservoirs.


Sign in / Sign up

Export Citation Format

Share Document