Effect of Compaction on the Surface Morphology of CuInSe2 Thin Films

2013 ◽  
Vol 275-277 ◽  
pp. 1998-2001
Author(s):  
Xiaojun Yuan ◽  
Yan Lai Wang ◽  
Jin Gang Xu

The CuInSe2 compound was prepared by paste coating and electrodeposition-selenization. Observed by scanning electron microscopy (SEM), the surface morphology of CuInSe2 thin films was improved by compaction. The result of the present work implied that the CuInSe2 film with smooth surface could be obtained under the pressure of 500 MPa at 60 °C.

1991 ◽  
Vol 250 ◽  
Author(s):  
Chien C. Chiu ◽  
Chi Kong Kwok ◽  
Seshu B. Desu

AbstractThe reaction of (100)Si with C2H2 in a hot wall CVD reactor has been studied using a X-ray photolectron spectroscopy, and a scanning electron microscopy. The growth of the SiC films was observed through the behavior of Si2p peaks and their plasmons. Smooth surface morphology with a monolayer of SiC was obtained at 950°C for 7 minutes and defects were observed for longer reaction times at this temperature. For higher reaction temperatures (e.g. 1000°C), defects were observed for reaction times as short as 10 seconds. The formation of defects was correlated to the out-diffusion of Si in the carborization process.


2011 ◽  
Vol 183-185 ◽  
pp. 1837-1841
Author(s):  
Lei Sha ◽  
Yan Lai Wang ◽  
Shi Liang Ban

CuInSe2 thin films were obtained by selenization of the Cu-In precursors in the atmosphere of Se vapour, which were prepared on stainless steel and titanium substrates by electrodeposition. The films were characterized by XRD, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The respective influences of composition, phases and surface morphology of Cu-In precursors on indium loss were investigated. The results indicate that the indium loss occurs in selenization process because of volatile In2Se arising. The indium loss is less in selenization process of Cu-In precursors contained CuIn, Cu2In and In phases.


1998 ◽  
Vol 541 ◽  
Author(s):  
Shunxi Wang ◽  
Qingxin Su ◽  
Marc A. Robert ◽  
Thomas A. Rabson

AbstractA low temperature metal-organic decomposition process for depositing LiNbO3 thin films on diamond/Si(100) substrates is reported. X-ray diffraction studies show that the films are highly textured polycrystalline LiNbO3 with a (012) orientation. Scanning electron microscopy analyses reveal that the LiNbO3 thin films have dense, smooth surface without cracks and pores, and adhere very well to the diamond substrates. The grain size in the LiNbO3 thin films is in the range of ∼0.2-0.5 μm. The effect of the processing procedures on the surface morphology of the LiNbO3 films is investigated. Possible reasons for the elimination of microcracks in the LiNbO3 films are discussed.


2001 ◽  
Vol 15 (17n19) ◽  
pp. 663-666
Author(s):  
L. VAILLANT ◽  
O. VIGIL ◽  
G. CONTRERAS-PUENTE ◽  
C. MEJÍA-GARCÍA

The optical and morphological properties of (ZnO)x(CdO)1-x semiconductor thin films with x composition in the range 0 □ x □ 0.5 are studied by the photoluminescence optical technique (PL), and the Scanning Electron Microscopy (SEM). The evolution of the band associated with oxygen content in the films is observed and described as a function of the film composition and the thermal annealing. The surface morphology is presented, where two different binary semiconducting species can be discerned in proportions dependent on the films composition.


Author(s):  
M. H. Kelley ◽  
J. Unguris ◽  
R. J. Celotta ◽  
D. T. Pierce

By measuring the spin polarization of secondary electrons generated in a scanning electron microscope, scanning electron microscopy with polarization analysis (SEMPA) can directly image the magnitude and direction of a material’s magnetization. Because the escape depth of the secondaries is only on the order of 1 nm, SEMPA is especially well-suited for investigating the magnetization of ultra-thin films and surfaces. We have exploited this feature of SEMPA to study the magnetic microstrcture and magnetic coupling in ferromagnetic multilayers where the layers may only be a few atomic layers thick. For example, we have measured the magnetic coupling in Fe/Cr/Fe(100) and Fe/Ag/Fe(100) trilayers and have found that the coupling oscillates between ferromagnetic and antiferromagnetic as a function of the Cr or Ag spacer thickness.The SEMPA apparatus has been described in detail elsewhere. The sample consisted of a magnetic sandwich structure with a wedge-shaped interlayer as shown in Fig. 1.


2018 ◽  
Vol 3 (1) ◽  
pp. 12 ◽  
Author(s):  
Zaimahwati Zaimahwati ◽  
Yuniati Yuniati ◽  
Ramzi Jalal ◽  
Syahman Zhafiri ◽  
Yuli Yetri

<p>Pada penelitian ini telah dilakukan isolasi dan karakterisasi bentonit alam menjadi nanopartikel montmorillonit. Bentonit alam yang digunakan diambil dari desa Blangdalam, Kecamatan Nisam Kabupaten Aceh Utara.  Proses isolasi meliputi proses pelarutan dengan aquades, ultrasonic dan proses sedimentasi. Untuk mengetahui karakterisasi montmorillonit dilakukan uji FT-IR, X-RD dan uji morfologi permukaan dengan Scanning Electron Microscopy (SEM). Partikel size analyzer untuk menganalisis dan menentukan ukuran nanopartikel dari isolasi bentonit alam. Dari hasil penelitian didapat ukuran nanopartikel montmorillonit hasil isolasi dari bentonit alam diperoleh berdiameter rata-rata 82,15 nm.</p><p><em>In this research we have isolated and characterized natural bentonite into montmorillonite nanoparticles. Natural bentonite used was taken from Blangdalam village, Nisam sub-district, North Aceh district. The isolation process includes dissolving process with aquades, ultrasonic and sedimentation processes.  The characterization of montmorillonite, FT-IR, X-RD and surface morphology test by Scanning Electron Microscopy (SEM). Particle size analyzer to analyze and determine the size of nanoparticles from natural bentonite insulation. From the research results obtained the size of montmorillonite nanoparticles isolated from natural bentonite obtained an average diameter of 82.15 nm.</em></p>


2018 ◽  
Vol 17 (03) ◽  
pp. 1760039
Author(s):  
K. M. Dhanisha ◽  
M. Manoj Christopher ◽  
M. Abinaya ◽  
P. Deepak Raj ◽  
M. Sridharan

The present work deals with NiO/Si3N4 layers formed by depositing nickel oxide (NiO) thin films over silicon nitrate (Si3N[Formula: see text] thin films. NiO films were coated on Si3N4-coated Si substrate using magnetron sputtering method by changing duration of coating time and were analyzed using X-ray diffractometer, field emission-scanning electron microscopy, UV–Vis spectrophotometer and four-point probe method to study the influence of thickness on physical properties. Crystallinity of the deposited films increases with increase in thickness. All films exhibited spherical-like structure, and with increase in deposition time, grains are coalesced to form smooth surface morphology. The optical bandgap of NiO films was found to decrease from 3.31[Formula: see text]eV to 3.22[Formula: see text]eV with upsurge in the thickness. The film deposited for 30[Formula: see text]min exhibits temperature coefficient resistance of [Formula: see text]1.77%/[Formula: see text]C as measured at 80[Formula: see text]C.


Sign in / Sign up

Export Citation Format

Share Document