Research on Internal-Mixing Nozzle for the Icing Environment Simulation

2013 ◽  
Vol 275-277 ◽  
pp. 527-531
Author(s):  
Liu Qing Xu ◽  
Hai Li Liu ◽  
Feng Quan Zhang ◽  
Li Li Guo

As one of the important part in aviation industry, nozzles are widely applied on the icing environment experiment. In this paper, we design and validate a novel internal-mixing nozzle for the icing experiment. To begin with, based on the requirements of experiment, the main structure sizes of nozzle are designed and the nozzle is processed for measuring droplet diameter. And then in order to investigate the atomization characteristics of droplet diameter, we model inner flow field of the nozzle and external flow field. Grids are divided to guarantee the simulation accuracy. Finally, the experiment is simulated by FLUENT software, and the simulation results of inner and external flow field are discussed respectively. The experiment shows that the simulation results of the nozzle are in good agreement with the test results.

2011 ◽  
Vol 308-310 ◽  
pp. 1609-1613
Author(s):  
Si Lin Chen ◽  
Xu Dong Yang ◽  
Shi Qiu ◽  
Chun Lin Ma ◽  
Tao Chen ◽  
...  

The numerical simulation of flow field of a new rectangular suction inlet installing guide plates with different rake angles was carried out by means of the K-ε turbulence model based on the Fluent hydromechanics calculation software. And that the influences of different rake angles of the internal guide plates on the flow field were analyzed. Consequently, the optimal rake angle of 45° was defined at last. Finally, the practical rectangle suction inlet, according to the numerical simulation results, was developed by installing internal guide plates with the optimal rake angle, which optimizes the distribution of internal and external flow field and improves the average side velocities of flow. Practical test results indicate that the new rectangular suction inlet could realize the uniform thickness collection to achieve the smooth work surface when collecting the bulk materials.


2010 ◽  
Vol 156-157 ◽  
pp. 326-331
Author(s):  
Xiao Shan Li ◽  
Huan Wu Sun ◽  
Jin Hua Huang

Based on the studies of the Standard, RNG models and SST model, a vehicle external flow field is calculated with three different models. Calculation results are compared with that of experiment. It is found that the error between the simulation results of the drag coefficient of RNS model and the wind tunnel experimental results are minimal. In the near wall region and airflow separation simulations, the simulation results of SST model are more close to the actual condition compared with standard and RNG models.


1994 ◽  
Vol 4 (4) ◽  
pp. 451-471 ◽  
Author(s):  
Nobuyuki Yatsuyanagi ◽  
Hiroshi Sakamoto ◽  
Kazuo Sato

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4136
Author(s):  
Clemens Gößnitzer ◽  
Shawn Givler

Cycle-to-cycle variations (CCV) in spark-ignited (SI) engines impose performance limitations and in the extreme limit can lead to very strong, potentially damaging cycles. Thus, CCV force sub-optimal engine operating conditions. A deeper understanding of CCV is key to enabling control strategies, improving engine design and reducing the negative impact of CCV on engine operation. This paper presents a new simulation strategy which allows investigation of the impact of individual physical quantities (e.g., flow field or turbulence quantities) on CCV separately. As a first step, multi-cycle unsteady Reynolds-averaged Navier–Stokes (uRANS) computational fluid dynamics (CFD) simulations of a spark-ignited natural gas engine are performed. For each cycle, simulation results just prior to each spark timing are taken. Next, simulation results from different cycles are combined: one quantity, e.g., the flow field, is extracted from a snapshot of one given cycle, and all other quantities are taken from a snapshot from a different cycle. Such a combination yields a new snapshot. With the combined snapshot, the simulation is continued until the end of combustion. The results obtained with combined snapshots show that the velocity field seems to have the highest impact on CCV. Turbulence intensity, quantified by the turbulent kinetic energy and turbulent kinetic energy dissipation rate, has a similar value for all snapshots. Thus, their impact on CCV is small compared to the flow field. This novel methodology is very flexible and allows investigation of the sources of CCV which have been difficult to investigate in the past.


Author(s):  
Sarah Gaertlein ◽  
Rene Woszidlo ◽  
Florian Ostermann ◽  
C. Nayeri ◽  
Christian O. Paschereit

2013 ◽  
Vol 662 ◽  
pp. 586-590
Author(s):  
Gang Lu ◽  
Qing Song Yan ◽  
Bai Ping Lu ◽  
Shuai Xu ◽  
Kang Li

Four types of Super Typhoon drip emitter with trapezoidal channel were selected out for the investigation of the flow field of the channel, and the CFD (Computational Fluid Dynamics) method was applied to simulate the micro-field inside the channel. The simulation results showed that the emitter discharge of different turbulent model is 4%-14% bigger than that of the experimental results, the average discharge deviation of κ-ω and RSM model is 5, 4.5 respectively, but the solving efficiency of the κ-ω model is obviously higher than that of the RSM model.


2016 ◽  
Vol 680 ◽  
pp. 82-85
Author(s):  
Jian Cai ◽  
Lan Chen ◽  
Umezuruike Linus Opara

OBJECTIVE To investigate the influence of mesh type on numerical simulating the dispersion performance of micro-powders through a home-made tube. METHODS With the computational fluid dynamics (CFD) method, a powder dispersion tube was meshed in three different types, namely, tetrahedral, unstructured hexahedral and prismatic-tetrahedral hybrid meshes. The inner flow field and the kinetic characteristics of the particles were investigated. Results of the numerical simulation were compared with literature evidences. RESULTS The results showed that using tetrahedral mesh had the highest computational efficiency, while employing the unstructured hexahedral mesh obtained more accurate outlet velocity. The simulation results of the inner flow field and the kinetic characteristics of the particles were slightly different among the three mesh types. The calculated particle velocity using the tetrahedral mesh had the best correlation with the changing trend of the fine particle mass in the first 4 stages of the new generation impactor (NGI) (R2 = 0.91 and 0.89 for powder A and B, respectively). Conclusions Mesh type affected computational time, accuracy of simulation results and the prediction abilities of fine particle deposition.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yicheng Sun ◽  
Yufan Fu ◽  
Baohui Chen ◽  
Jiaxing Lu ◽  
Wanquan Deng

In order to study the internal flow characteristics and external droplet velocity distribution characteristics of the swirl nozzle, the following methods were used: numerical simulations were used to study the internal flow characteristics of a swirl nozzle and phase Doppler particle velocimetry was used to determine the corresponding external droplet velocity distribution under medium and low pressure conditions. The distributions of pressure and water velocity inside the nozzle were obtained. Meanwhile, the velocities of droplets outside the nozzle in different sections were discussed. The results show that the flow rate in the swirl nozzle increases with the increase in inlet pressure, and the local pressure in the region decreases because of the excessive velocity at the internal outlet section of the swirl nozzle, resulting in cavitation. The experimental results show that under an external flow field, the minimum droplet velocity occurs in the axial direction; starting from the axis, the velocity first increases and then decreases along the radial direction. Swirling motion inside the nozzle and velocity variations in the external flow field occur under medium and low pressure conditions. The relationship between the inlet pressure and the distributions of water droplets’ velocities was established, which provides a reference for the research and development of the swirl nozzle.


Sign in / Sign up

Export Citation Format

Share Document