The Design and Performance Analysis of Multi-Axle Dynamic Steering System

2010 ◽  
Vol 29-32 ◽  
pp. 756-761
Author(s):  
Shu Feng Wang ◽  
Jun You Zhang

In order to improve vehicle steering performance, Multi-axle dynamic steering technology is put forward. Because of simple and low cost, the mechanical dynamic steering mechanism is suitable for heavy vehicle. In order to design ideal steering mechanism, the principle of dynamic steering mechanism was analyzed. Based on theories of multi-axle dynamic steering and vehicle dynamic, the steering angle relationships of different axles were analyzed. Taken a vehicle as an example, the corresponding steering mechanism was designed. Full vehicle model was established and handling stability performance was simulated. The results show that the mechanical dynamic steering vehicle can effectively improve vehicle agility performance at low speed and stability at high speed.

2012 ◽  
Vol 459 ◽  
pp. 544-548 ◽  
Author(s):  
Wei Liang ◽  
Jian Bo Xu ◽  
Wei Hong Huang ◽  
Li Peng

Network security technology ensures secure data transmission in network. Meanwhile, it brings extra overhead of security system in terms of cost and performance, which seriously affects the rapid development of existing high-speed encryption systems. The existing encryption technology cannot meet the demand of high security, low cost and high real-time. For solving above problems, an ECC encryption engine architecture based on scalable public key cipher and a high-speed configurable multiplication algorithm are designed. The algorithm was tested on FPGA platform and the experiment results show that the system has better computation speed and lower cost overhead. By comparing with other systems, our system has benefits in terms of hardware overhead and encryption time ratio


2020 ◽  
Vol 327 ◽  
pp. 03004
Author(s):  
D. Santana Sanchez ◽  
A. Mostafa

The present paper discusses the design analysis and limitations of the steering system of a buggy. Many geometrical and performance characteristics of the designed steering system were considered to address the kinematic constraints and load carrying capacity of the steering elements. Ackremann geometry approach was used to assess the limiting steering angle, while Lewis bending formula with the inclusion of dynamic effects was employed to characterise the flexural properties of the rack and pinion steering system. Analytical results were numerically verified using ABAQUS/Explicit nonlinear finite element (FE) package. Good agreement has been achieved between analytical and numerical results in predicting the flexural behaviour of the steering rack and pinion system.


2011 ◽  
Vol 403-408 ◽  
pp. 3099-3103
Author(s):  
Dai Sheng Zhang ◽  
Jun Jie Huang ◽  
Hao Wang

In order to improve vehicle steering stability, the influence of tire loads and steering system to the vehicle stability is taken into account in this paper, and the 4WS vehicle model is established and modeling and simulation research is carried through with the Matalab/simulink. The results point out the differences and characters of vehicle control mode in low speed and high speed. This model provides a method for 4WS vehicle design, improvement and optimization, and also provides reference for 4WS theory research and test check.


Author(s):  
Farong Kou ◽  
Xinqian Zhang ◽  
Jiannan Xu

Steering Angle is related to the design and optimization of steering mechanism and suspension, but it is not equal to the angle of knuckle around kingpin because of the existence of wheel alignment parameters. To calculate the steering angle, this paper derives based on homogeneous transformation its function expression by analyzing spatial geometric relation between the two angles and calculating coordinates related to steering trajectory of wheel center. Then, multi-body model of McPherson suspension with steering system is built and the calculation correctness is verified by comparing the function curve plotted by MATLAB software with the curve simulated by Adams/Car software. The calculation and simulation indicate that between the two angles, there is a ratio which is related to wheel alignment parameters and greater than 1.


Author(s):  
M. Palanivendhan ◽  
U. Banwar ◽  
S. Vyas ◽  
S. Bohra

Most vehicles today employ conventional steering system where the front wheels are solely responsible for steering the vehicle, due to this the rear wheels remain dependent of the front wheels in the dynamic condition which is not allowing the vehicle to reach its maximum potential. On the other hand, in a four-wheel steering system the rear wheels along with the front wheels steer the vehicle improving its manoeuvrability. Four wheels steering also produces better acceleration as power is distributed to all the four-wheels enhancing the net traction and reducing the overall rolling resistance. Vehicles today are designed to under-steer a little with a steering ratio ranging between 14 and 22, this phenomenon fails in few scenarios where it takes longer to manoeuvre a vehicle in case of lane emergencies. Implementing in-phase and counter-phase steering mechanisms in a vehicle allow sharper turn, reduces tire wear and improves the overall manoeuvrability of the vehicle. Factors like steering torque, turning angle and velocity of the vehicle are taken into consideration for devising a proper method to shift between different steering modes. The input from steering angle and torque at a certain speed, allows the vehicle to choose between the crabs, parallel or counter steering mechanism during a turn for best performance. Thereby, integrating these mechanisms in a single vehicle would invariably stabilize and provide a better control to the driver in high as well as slow speed conditions.


2004 ◽  
Vol 471-472 ◽  
pp. 140-143 ◽  
Author(s):  
Ning He ◽  
Liang Li ◽  
X.L. Li

Gas cooled cutting is an important branch of green machining technology with its excellent cooling performance and is used more and more widely in field of machining. A new method of developing cooling gas generator using semiconductor refrigeration is presented in this paper. Then the main principle, structure and performance of the generator are introduced. In addition, the experiments of high speed milling of Ti Alloy using cooled nitrogen gas were conducted and satisfactory results were achieved. These researches show that the new cooling gas generator has a series of merits such as simple structure, excellent performance, handy operation, low cost and significant spreading value etc.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1941
Author(s):  
Haike Zhu ◽  
Sean Anderson ◽  
Nick Karfelt ◽  
Lingjun Jiang ◽  
Yunchu Li ◽  
...  

Targeting high-speed, low-cost, short-reach intra-datacenter connections, we designed and tested an integrated silicon photonic circuit as a transmitter engine. This engine can be packaged into an optical transceiver module which meets the QSFP-DD Form Factor, together with other electrical/optical components. We first present the design and performance of a high-speed silicon modulator, which had a 3-dB EO bandwidth of >40 GHz and an ER of >5 dB. We then incorporated the engine onto a test board and injected a 53.125 Gbaud PAM4 signal. Clear eye patterns were observed at the receiver with TDECQ ~3 dB for all four lanes.


Author(s):  
Yoshihiro Takita ◽  
Date Hisashi

This paper proposes an SSM (Sensor Steering Mechanism) for a lateral guided vehicle with an articulated body. Authors demonstrated a simple lateral guiding method SSM for front wheel steer type, the reverse phase four-wheel steer type and rear wheel steer type vehicles. SSM presents a stable lateral guiding performance for automated vehicle that following a straight and curved path created by a guideway. This paper proposes a simplified SSM to remove the following servo system for a rotating camera. The simplified SSM is applied to 1/25 scale articulated dump truck that was developed and discussed in the previous paper. The stability of the simplified SSM is discussed. Experimental and simulation results show stable movement and performance of the proposed method.


Author(s):  
Fritz Hieb ◽  
Michael Hargather

Digital image correlation (DIC) has become an industry staple quickly replacing classic techniques. High-speed images are taken of a material sample being deformed, then algorithms applied to calculate variables of sample deformation such as stress, strain, displacement and displacement velocity. Currently, the analysis technology is not available at the level of simplicity and accessibility needed to teach the methods in an undergraduate laboratory. This project aims to develop a single program to perform DIC that is simple to use, accurate, and available at low cost. This paper describes the state of current DIC algorithm research, drawbacks of available technologies, the development cycle of the software including the techniques used to obtain the necessary accuracy and performance, and a demonstration of the DIC functionality in comparison to results obtained from commercial software.


Sign in / Sign up

Export Citation Format

Share Document