Research on Improved Thermal Inertia Model for Retrieving Soil Moisture

2013 ◽  
Vol 295-298 ◽  
pp. 2075-2083
Author(s):  
Zhen Hua Liu ◽  
Ying Shi Zhao ◽  
Yue Ming Hu

Soil moisture is one of the most important land environmental variables, relative to land surface climatology, hydrology, and ecology. A method to estimate soil moisture content from optical and thermal spectral in-formation of ASTER imagery based on thermal inertia is presented in this paper. Compared to models published previously, four improvements have been made: (1) as a key component of soil surface energy balance, the series two-layer is applied to solving soil latent and sensible heat flux in the better-covered vegetation area. And the Shuttleworth and Wallace (S-W) ET model is used to simulate soil latent flux; (2) because component temperature inversion is still an ill-posed problem, genetic inverse algorithm (GIA) is used to realize retrieval of component temperature; (3) in order to extend the scope of the thermal inertia model, B in the equation is derived from mechanism; (4) to eliminate partly atmospheric and the surface structure influence, the improved thermal inertia was normalized to fulfill the inversion of soil moisture. Taking YingKe green land in china for example, field experiment were carried out to validate the developed model. The method successfully estimated better-covered vegetation region surface soil moisture with an average error of 0.067. This model provides a new way of thinking about remote sensing thermal inertia methods to acquire regional-scale soil moisture.

2021 ◽  
Vol 13 (1) ◽  
pp. 133
Author(s):  
Hao Sun ◽  
Yajing Cui

Downscaling microwave remotely sensed soil moisture (SM) is an effective way to obtain spatial continuous SM with fine resolution for hydrological and agricultural applications on a regional scale. Downscaling factors and functions are two basic components of SM downscaling where the former is particularly important in the era of big data. Based on machine learning method, this study evaluated Land Surface Temperature (LST), Land surface Evaporative Efficiency (LEE), and geographical factors from Moderate Resolution Imaging Spectroradiometer (MODIS) products for downscaling SMAP (Soil Moisture Active and Passive) SM products. This study spans from 2015 to the end of 2018 and locates in the central United States. Original SMAP SM and in-situ SM at sparse networks and core validation sites were used as reference. Experiment results indicated that (1) LEE presented comparative performance with LST as downscaling factors; (2) adding geographical factors can significantly improve the performance of SM downscaling; (3) integrating LST, LEE, and geographical factors got the best performance; (4) using Z-score normalization or hyperbolic-tangent normalization methods did not change the above conclusions, neither did using support vector regression nor feed forward neural network methods. This study demonstrates the possibility of LEE as an alternative of LST for downscaling SM when there is no available LST due to cloud contamination. It also provides experimental evidence for adding geographical factors in the downscaling process.


2013 ◽  
Vol 10 (11) ◽  
pp. 7575-7597 ◽  
Author(s):  
K. A. Luus ◽  
Y. Gel ◽  
J. C. Lin ◽  
R. E. J. Kelly ◽  
C. R. Duguay

Abstract. Arctic field studies have indicated that the air temperature, soil moisture and vegetation at a site influence the quantity of snow accumulated, and that snow accumulation can alter growing-season soil moisture and vegetation. Climate change is predicted to bring about warmer air temperatures, greater snow accumulation and northward movements of the shrub and tree lines. Understanding the responses of northern environments to changes in snow and growing-season land surface characteristics requires: (1) insights into the present-day linkages between snow and growing-season land surface characteristics; and (2) the ability to continue to monitor these associations over time across the vast pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north of 60° N) linkages between two temporally distinct data products created from AMSR-E satellite passive microwave observations: GlobSnow snow water equivalent (SWE), and NTSG growing-season AMSR-E Land Parameters (air temperature, soil moisture and vegetation transmissivity). Due to the complex and interconnected nature of processes determining snow and growing-season land surface characteristics, these associations were analyzed using the modern nonparametric technique of alternating conditional expectations (ACE), as this approach does not impose a predefined analytic form. Findings indicate that regions with lower vegetation transmissivity (more biomass) at the start and end of the growing season tend to accumulate less snow at the start and end of the snow season, possibly due to interception and sublimation. Warmer air temperatures at the start and end of the growing season were associated with diminished snow accumulation at the start and end of the snow season. High latitude sites with warmer mean annual growing-season temperatures tended to accumulate more snow, probably due to the greater availability of water vapor for snow season precipitation at warmer locations. Regions with drier soils preceding snow onset tended to accumulate greater quantities of snow, likely because drier soils freeze faster and more thoroughly than wetter soils. Understanding and continuing to monitor these linkages at the regional scale using the ACE approach can allow insights to be gained into the complex response of Arctic ecosystems to climate-driven shifts in air temperature, vegetation, soil moisture and snow accumulation.


2015 ◽  
Vol 19 (1) ◽  
pp. 615-629 ◽  
Author(s):  
X. Han ◽  
H.-J. H. Franssen ◽  
R. Rosolem ◽  
R. Jin ◽  
X. Li ◽  
...  

Abstract. The recent development of the non-invasive cosmic-ray soil moisture sensing technique fills the gap between point-scale soil moisture measurements and regional-scale soil moisture measurements by remote sensing. A cosmic-ray probe measures soil moisture for a footprint with a diameter of ~ 600 m (at sea level) and with an effective measurement depth between 12 and 76 cm, depending on the soil humidity. In this study, it was tested whether neutron counts also allow correcting for a systematic error in the model forcings. A lack of water management data often causes systematic input errors to land surface models. Here, the assimilation procedure was tested for an irrigated corn field (Heihe Watershed Allied Telemetry Experimental Research – HiWATER, 2012) where no irrigation data were available as model input although for the area a significant amount of water was irrigated. In the study, the measured cosmic-ray neutron counts and Moderate-Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) products were jointly assimilated into the Community Land Model (CLM) with the local ensemble transform Kalman filter. Different data assimilation scenarios were evaluated, with assimilation of LST and/or cosmic-ray neutron counts, and possibly parameter estimation of leaf area index (LAI). The results show that the direct assimilation of cosmic-ray neutron counts can improve the soil moisture and evapotranspiration (ET) estimation significantly, correcting for lack of information on irrigation amounts. The joint assimilation of neutron counts and LST could improve further the ET estimation, but the information content of neutron counts exceeded the one of LST. Additional improvement was achieved by calibrating LAI, which after calibration was also closer to independent field measurements. It was concluded that assimilation of neutron counts was useful for ET and soil moisture estimation even if the model has a systematic bias like neglecting irrigation. However, also the assimilation of LST helped to correct the systematic model bias introduced by neglecting irrigation and LST could be used to update soil moisture with state augmentation.


2020 ◽  
Vol 12 (3) ◽  
pp. 455 ◽  
Author(s):  
Yaokui Cui ◽  
Xi Chen ◽  
Wentao Xiong ◽  
Lian He ◽  
Feng Lv ◽  
...  

Surface soil moisture (SM) plays an essential role in the water and energy balance between the land surface and the atmosphere. Low spatio-temporal resolution, about 25–40 km and 2–3 days, of the commonly used global microwave SM products limits their application at regional scales. In this study, we developed an algorithm to improve the SM spatio-temporal resolution using multi-source remote sensing data and a machine-learning model named the General Regression Neural Network (GRNN). First, six high spatial resolution input variables, including Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), albedo, Digital Elevation Model (DEM), Longitude (Lon) and Latitude (Lat), were selected and gap-filled to obtain high spatio-temporal resolution inputs. Then, the GRNN was trained at a low spatio-temporal resolution to obtain the relationship between SM and input variables. Finally, the trained GRNN was driven by the high spatio-temporal resolution input variables to obtain high spatio-temporal resolution SM. We used the Fengyun-3B (FY-3B) SM over the Tibetan Plateau (TP) to test the algorithm. The results show that the algorithm could successfully improve the spatio-temporal resolution of FY-3B SM from 0.25° and 2–3 days to 0.05° and 1-day over the TP. The improved SM is consistent with the original product in terms of both spatial distribution and temporal variation. The high spatio-temporal resolution SM allows a better understanding of the diurnal and seasonal variations of SM at the regional scale, consequently enhancing ecological and hydrological applications, especially under climate change.


2021 ◽  
Author(s):  
Anthony Mucia ◽  
Bertrand Bonan ◽  
Clément Albergel ◽  
Yongjun Zheng ◽  
Jean-Christophe Calvet

Abstract. The land data assimilation system, LDAS-Monde, developed by the Research Department of the French Meteorological service (Centre National de Recherches Météorologiques – CNRM) is capable of well representing Land Surface Variables (LSVs) from regional to global scales. It jointly assimilates satellite-derived observations of leaf area index (LAI) and surface soil moisture (SSM) into the Interactions between Soil Biosphere and Atmosphere (ISBA) land surface model (LSM), increasing the accuracy of the model simulations and forecasts of the LSVs. The assimilation of vegetation variables directly impacts RZSM through seven control variables consisting in soil moisture of seven soil layers from the soil surface to 1 m depth. This capability is particularly useful in dry conditions, where SSM and RZSM are decoupled to a large extent. However, this positive impact does not reach its full potential due to the low temporal availability of optical-based LAI observations, at best, every ten days, and can suffer from months of no data over regions and seasons with heavy cloud cover such as winter or monsoon conditions. In that context, this study investigates the assimilation of low frequency passive microwave vegetation optical depth (VOD), available in almost all weather conditions, as a proxy of LAI. The Vegetation Optical Depth Climate Archive (VODCA) dataset provides near-daily observations of vegetation conditions, far more frequently than optical based product such as LAI. This study's goal is to convert the more frequent X-band VOD observations into proxy-LAI observations through linear re-scaling and to assimilate them in place of direct LAI observations. Seven assimilation experiments were run from 2003 to 2018 over the contiguous United States (CONUS), with 1) no assimilation, the assimilation of 2) SSM, 3) LAI, 4) re-scaled VODX, 5) re-scaled VODX only when LAI observations available, 6) LAI + SSM, and 7) re-scaled VODX + SSM. This study analyzes these assimilation experiments by comparing to satellite derived observations and in situ measurements and is focused on the variables of LAI, SSM, gross primary production (GPP), and evapotranspiration (ET). Each experiment is driven by atmospheric forcing reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5. Results showed improved representation of GPP and ET by assimilating re-scaled VOD in place of LAI. Additionally, the joint assimilation of vegetation related variables (i.e. LAI or re-scaled VOD) and SSM demonstrates a small improvement in the representation of soil moisture over the assimilation of any dataset by itself.


2020 ◽  
Vol 4 (2) ◽  
pp. 48-61
Author(s):  
Rian Nurtyawan ◽  
Ervan Muktamar Hendarna

ABSTRAKPada umumnya lahan basah dikelola menjadi area pertanian ataupun perkebunan. Fungsi lahan basah memiliki fungsi ekologis seperti pengendali banjir, pencegah intrusi air laut, erosi, pencemaran, dan pengendali iklim global. Data pengindraan jauh yang digunakan pengelolaan lahan basah yaitu pengindraan jauh optik dan radar. Tujuan dari penelitian ini adalah mengeksplorasi korelasi potensial dari data optik dan radar untuk mengamati dinamika pada kawasan lahan basah tersebut dan melakukan pemetaan. Metode yang digunakan pada pengindraan jauh optik yaitu LST (Land Surface Temperature) berdasarkan Citra Satelit Landsat-8 dan metode yang digunakan pada pengindraan jauh radar yaitu estimasi kelembaban tanah berdasarkan Citra Satelit Sentinel-1A. Hasil pengamatan dinamika dan pemetaan pada wilayah Kabupaten Bandung Raya memiliki nilai kelembaban tanah tertinggi pada Bulan Mei dengan nilai kelembapan tanah tanah rata-rata sebesar 20,9 % pada polarisasi VH. Suhu permukaan tanah terendah terjadi pada bulan Mei dengan nilai suhu rata-rata sebesar 19.5 °C. Kolerasi antara nilai kelembapan tanah tanah dan suhu permukaan tanah pada wilayah Kabupaten Bandung Raya berdasarkan metode koefisien determinasi sebesar R2=0.705 didapatkan bahwa semakin tinggi nilai kelembapan tanah tanah maka nilai suhu permukaan tanah akan semakin rendah.Kata kunci: Kawasan lahan basah, Pengindraan Jauh Optik, Pengindraan Jauh Radar, Pengamatan Dinamika, Pemetaan. ABSTRACTIn general wetlands managed become an area of agriculture or plantations. The extent of wetland that has been used can be damaged if it is not managed properly and integrated.. The purpose of this research is to explore the potential correlations between several parameters of optical and radar data to observe the dynamics of wetlands area and mapping the wetlands area. The methodology that was used in optical remote sensing is LST (Land Surface Temperature) based on Landsat-8 Satellite Image and the method used in remote radar sensing is estimation of soil moisture based on Sentinel-1A Satellite Image. The result of the observation in the area and mapping the dynamics in Bandung Raya District had the highest soil moisture values in May with 27% of soil water level in VH polarization and 78.1% in VV polarization and the lowest value in each month is 11.8% and the highest soil surface temperature in August with a value 37.9 ° C and the minimum value 19 ° C..Keywords: Wetland Area, Optical Remote Sensing, Remote Radar Sensing, Dynamics Observation, Mapping.


2005 ◽  
Vol 5 ◽  
pp. 49-56 ◽  
Author(s):  
A. Löw ◽  
R. Ludwig ◽  
W. Mauser

Abstract. Hydrologic processes, such as runoff production or evapotranspiration, largely depend on the variation of soil moisture and its spatial pattern. The interaction of electromagnetic waves with the land surface can be dependant on the water content of the uppermost soil layer. Especially in the microwave domain of the electromagnetic spectrum, this is the case. New sensors as e.g. ENVISAT ASAR, allow for frequent, synoptically and homogeneous image acquisitions over larger areas. Parameter inversion models are therefore developed to derive bio- and geophysical parameters from the image products. The paper presents a soil moisture inversion model for ENVISAT ASAR data for local and regional scale applications. The model is validated against in situ soil moisture measurements. The various sources of uncertainties, being related to the inversion process are assessed and quantified.


2020 ◽  
Vol 12 (15) ◽  
pp. 2414
Author(s):  
Xiao Bai ◽  
Lanhui Zhang ◽  
Chansheng He ◽  
Yi Zhu

Temporal and spatial variability of soil moisture has an important impact on hydrological processes in mountainous areas. Understanding such variability requires soil moisture datasets at multiple temporal and spatial scales. Remote sensing is a very effective method to obtain surface (~5 cm depth) soil moisture at the regional scale but cannot directly measure soil moisture at deep soil layers (>5 cm depth) currently. This study chose the upstream of the Heihe River Watershed in the Qilian Mountain Ranges in Northwest China as the study area to estimate the profile soil moisture (0–70 cm depth) at the regional scale using satellite Vegetation Index (NDVI) and Land Surface Temperature (LST) products. The study area was divided into 31 zones according to the combination of altitude, vegetation and soil type. Long-term in situ soil moisture observation stations were set up at each of the zones. Soil moisture probe, ECH2O, was used to collect soil moisture at five layers (0–10, 10–20, 20–30, 30–50 and 50–70 cm) continuously. Multiple linear regression equations of time series MODIS (Moderate-resolution Imaging Spectroradiometer) NDVI, LST and soil moisture were developed for each of the five soil layers at the 31 zones to estimate the soil moisture (0–70 cm) on a regional scale with a spatial resolution of 1 km2 and a temporal resolution of 16-d from October, 2013 to September, 2016. The correlation coefficient R of the regression equations was between 0.47 and 0.94, the RMSE was 0.03, indicating that the estimation method based on the MODIS NDVI and LST data was suitable and could be applied to alpine mountainous areas with complex topography, soil and vegetation types. The overall pattern of soil moisture spatial distribution indicated that soil moisture was higher in the eastern region than in the western region, and the soil moisture content in the whole study area was 14.5%. The algorithm and results provide novel applications of remote sensing to support soil moisture data acquisition and hydrological research in mountainous areas.


Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 602 ◽  
Author(s):  
Yang ◽  
Wang ◽  
Huang

The warming climate significantly modifies the global water cycle. Global evapotranspiration has increased over the past decades, yet climate models agree on the drying trend of land surface. In this study, we conducted an intercomparison analysis of the surface energy partitioning across Coupled Model Intercomparison Phase 5 (CMIP5) simulations and evaluated its behaviour with surface temperature and soil moisture anomalies, against the theoretically derived thermodynamic formula. Different responses over land and sea surfaces to elevated greenhouse gas emissions were found. Under the Representative Concentration Pathway of +8.5 W m−2 (RCP8.5) warming scenario, the multi-model mean relative efficiency anomaly from CMIP5 simulations is 3.83 and −0.12 over global sea and land, respectively. The significant anomaly over sea was captured by the thermodynamic solution based on the principle of maximum entropy production, with a mean relative error of 14.6%. The declining trend over land was also reproduced, but an accurate prediction of its small anomaly will require the inclusions of complex physical processes in future work. Despite increased potential evapotranspiration under rising temperatures, both CMIP5 simulations and thermodynamic principles suggest that the soil moisture-temperature feedback cannot support long-term enhanced evapotranspiration at the global scale. The dissipation of radiative forcing eventually shifts towards sensible heat flux and accelerates the warming over land, especially over South America and Europe.


Sign in / Sign up

Export Citation Format

Share Document