Experimental Study on Wide Strip Mining with Similar Simulation under Deep-Lying Seams

2013 ◽  
Vol 295-298 ◽  
pp. 3318-3322
Author(s):  
Bao Bin Gao ◽  
Lin Li ◽  
Hui Gui Li

The ground movement laws due to wide strip mining under deep-lying seams has been studied with the experiment of similar material model, and the results of experiment could analysis qualitatively that it is feasible for wide strip mining under deep-lying seams. Taking 25 mining area of Hemei 9th mine as geologic background, the model of wide strip mining under deep seams has been made, which was used to study on the deformation of overburden and the ground movement laws. The results of experiment show that the properties and thickness of strata play a control role on the deformation, and the key strata play a core role; the deformation was dispersed with wide strip mining. When the width of strip mining and protective coal pillar are scientific and reasonable, the purpose of increasing the width of strip mining under the condition of controlling deformation could be achieved, and the entire mining area would be formed a flat subsidence basin. These achievements provide a scientific basis for solving the problem for the ground buildings protection in the conditions of wide strip mining under deep-lying seams, and that also provide some references for further studying on the method of wide strip mining under deep-lying seams.

2013 ◽  
Vol 760-762 ◽  
pp. 1967-1971
Author(s):  
Fan Yang ◽  
Xiao Dong Cheng

Long-term scientific research and production practice show that there are rules to follow in mining influence, but the amount of measurement data collation and analysis not only cost of manpower, material resources, and calculation is very prone to error. Computer to replace manual calculation, not only convenient, quick, efficient, and adopts automatic generation technology by drawing graphs, is unattainable by manual technology. Mine land reclamation in mining subsidence is expected to software research for mining design, mining area coal mine district design, land compensation, land reclamation and comprehensive utilization technology work provides a scientific basis, promote the process of security coal pillar mining, ensures the mine in each work smoothly, improve the economic benefit of mine, to the national economy and the sustainable development of coal industry itself has important significance.


2011 ◽  
Vol 121-126 ◽  
pp. 4146-4150 ◽  
Author(s):  
Zhong Ping Guo ◽  
Jia Zhuo Li ◽  
Chang Hua Li ◽  
Hai Bin Ge

To recover strip coal pillar and reduce cost after strip mining, the short wall box style mining method was presented. Strata stability was analyzed based on support plate theory, mechanical model of the second strata movement was created, and safety factor was deduced .The ground movement and deformation were predicted, with probability integration method. The application demonstrates that this mining method can protect buildings on earth’s surface, improve the recovery ratio of coal and reduce cost. This mining method has a good economic advantage and environmental benefit.


2012 ◽  
Vol 616-618 ◽  
pp. 406-410
Author(s):  
Gui Liu ◽  
Hua Xing Zhang ◽  
Jin Hui Chen ◽  
Chao Gao

By making full use of the advantages of strip mining method and full-pillar mining method, the wide strip and full-pillar mining method can achieve the aim of mining under villages. However, at the full-pillar mining stage, the difficulty in managing several workfaces which are at work at the same time still exists. To improve the wide strip and full-pillar mining method’s applicability, an optimization of extraction sequence for coal pillars instead of the multi-working-face is put forward at the stage of full-pillar mining, and in the case of the deformation limit of surface structures is satisfied, to extract all the coal pillars which are under villages. By specific analysis of the extraction sequence optimization of the coal pillars in No.1 mine under Qian Xudapo village which belongs to Chang Chun coal Co., LTD., a better result is got which also acts a technological reference for the extraction under villages.


2011 ◽  
Vol 121-126 ◽  
pp. 2892-2896
Author(s):  
Ming Tao Gao ◽  
Ming Zhang ◽  
Ming Zhou

Because of mine production, the open-pit enission of coal gangue solid waste and surface subsidence are one of important causes to failure the mining area land and environment, so the key technology, processes and equipment of filling mining to replace coal have been developed, which convergences the existing system of mining technology, And the stability theory of the control of filling mining rock movement and the method of surface subsidence prediction have been established, which provides a scientific basis for equipment Selection and the design of subsidence control; the key technologies of filling mining to replace coal is successfully applicated, which significantly improves the recovery rate of coal resources in China and constructs the new coordinated development model that is combined by the underground disposal of coal waste, mining subsidence control and the “under three”safe coal mining, through the above, the target of green mining and the coordinated development of mining social, economic and environmental will be achieved.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Bangyou Jiang ◽  
Hongguang Ji ◽  
Long Fu ◽  
Shitan Gu ◽  
Tong Zou ◽  
...  

The practice shows that deep strip mining induces rockburst disaster easily. Accurately evaluating rockburst risk of the strip coal pillar is of great significance for ensuring the safety of deep strip mining. In this paper, the catastrophe mechanics model was used to analyze the abrupt instability condition of strip coal pillar. And the three indicators that are the medium stiffness ratio (k) of the elastic and plastic zone in the coal pillar, the plastic zone width ratio (aY), and the elastic deformation index (Uq) of core zone were put forward with considering the geometry size of coal pillar. Based on the 3202 panel of Gucheng Coal Mine, the evolution characteristics of rockburst risk of coal pillar under different mining widths and coal pillar widths were studied by numerical simulation. The evaluation result shows that the strip coal pillar of the 3202 panel is in danger of strong rockburst, which is more in line with the actual situation than the results of the traditional rockburst tendency identification test and comprehensive index method. These three indicators can be regarded as important indicators to evaluate the rockburst risk in the strip mining engineering field. Based on that, the design principle of strip mining in Gucheng Coal Mine was put forward, which is considered an important reference for similar cases.


2019 ◽  
Vol 11 (13) ◽  
pp. 3719 ◽  
Author(s):  
Yihe Yu ◽  
Liqiang Ma

The mining induced subsidence and strata deformation are likely to affect the stability of the aquiclude, resulting in loss of water resources in the mining area. In order to reduce the disturbance of coal mining to the overlying strata and to preserve the water resources in the coal mining area, the roadway backfill mining (RBM) method was trialed in Yuyang coal mine in Northern Shaanxi, China. Based on pressure arch theory and ultimate strength theory, a mechanical model was developed to analyze the stability of coal pillars. Then the maximum number of vacant roadways between the mining face and the backfilling face was determined according to the stability of coal pillar and filling body. The method to calculate aquiclude subsidence and deformation was also proposed. Furthermore, as indicated by FLAC3D numerical simulations, the maximum tensile stress subjected by the aquiclude was 0.14 MPa, which is smaller than its tensile strength; the horizontal deformation was 0.24 mm/m, which is also smaller than the critical deformation of failure. Field monitoring data demonstrated a maximum of 2.76 m groundwater level drop in the mining area after mining. The groundwater level was determined to be 4.45~10.83 m below surface, ensuring the normal growth of surface vegetation and realizing the water-conservation coal mining (WCCM).


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zhenhua Li ◽  
Yingkun Pang ◽  
Yongsheng Bao ◽  
Zhanyuan Ma

In the process of high-intensity and large-space mining in Shendong mining area, various surface cracks are generated on the surface, resulting in serious damage to the surface buildings and the local ecological environment. To study the influence of overlying rock movement on surface failure of near-field single key strata of near-shallow buried and large mining height working face, the relationship between overburden movement, strata pressure appearance, and surface failure at working face 52307 in Daliuta mining area was analyzed by field measurement and numerical simulation. The results show the following: (1) there is only one thick and hard key stratum in the overburden of large mining height and near-shallow buried working face. Under the condition of presplitting roof blasting, the first weighting step is still as high as 95 m, and the periodic breaking step of roof is 20–30 m. During the weighting, the working resistance of support is still close to the rated resistance. (2) The single key stratum plays an obvious role in controlling overburden movement. After the first weighting of the working face, a stepped subsidence crack appears on the surface within a short time, and the crack lags behind the working face for about 5 m. (3) During each periodic weighting process, the breaking and subsidence of key blocks are accompanied by surface cracks.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Junhui Fu ◽  
Haitao Sun ◽  
Guangcai Wen ◽  
Rifu Li

Surface well deformation and failure in a mining area are a key issue challenging the surface well gas extraction technique. To provide information for the design of gas extraction surface wells in mining areas, the deformation and failure of surface wells with different materials under the influence of mining-induced rock movement were analyzed based on a three-dimensional physical similarity simulation and key strata theory. The research findings reveal that the fractures in the overlying strata had an elliptic-parabolic shape. The stope center was the highest point in the fracture zone. Horizontal shear deformation was most likely to occur in the thick strata (horizontal shear deformation could be larger if they were key strata) with large strength and stiffness near the intersection between the fracture surface of the overlying strata and the surface well. Due to the shear force and bending moment of the key strata, the surface well deformed into an S-shape. In addition, the surface well was vulnerable to shear deformation in the key strata. The surface well deformation did not weaken from bottom to top due to rock movement. Instead, it was subject to the influence of the rupture strength of the key strata. The surface well above the key strata was prone to tensile strain-compressive strain transition. In contrast, an abrupt change in the compressive strain occurred in the surface well below the key strata where tensile failure may occur. Moreover, a mechanical model of the surface well during the movement of the key strata was established according to the characteristics of the surface well deformation. The test results provide important information on the design optimization of surface wells and high-risk area protection in mining areas.


2011 ◽  
Vol 383-390 ◽  
pp. 2201-2205
Author(s):  
Xin Xi Liu ◽  
Xue Zhi Wang

Analysis on the characters of ground subsidence of Yangjiaping mining area, with same excavation depth and recovery coefficient, the numerical simulations to nonlinear large deformation using finite-difference method(FLAC) are achieved on the different strip extraction schemes that adopted different mining and reservation width. The result indicates that the subsidence values and horizontal deformation increases with the increasing of the strip extraction width on condition of the same recovery rate. Based on probability density function (PDF) method, the relationship of the coal pillar width, the mining width and ground deformation is acquired, which is some useful reference for using the strip extraction method to control the surface movement and deformation.


Sign in / Sign up

Export Citation Format

Share Document