Effect of Electron Beam Welding on Microstructure and Mechanical Properties of Spray-Deposited Al-Zn-Mg-Cu Alloy

2013 ◽  
Vol 302 ◽  
pp. 230-235
Author(s):  
Feng Wang ◽  
Yu Ting Zuo ◽  
Bai Qing Xiong ◽  
Yon Gan Zhang ◽  
Hong Wei Liu ◽  
...  

In this study, Al-8.6Zn-2.6Mg-2.2Cu (wt,%) alloy was synthesized by the spray atomization and deposition technique. Electron beam welding (EBW) joint in the spray-deposited Al-8.6Zn-2.6Mg-2.2Cu alloy is composed of fusion zone, heat affected zone and base metal region. The microstructure of the fusion zone has been found to be very fine equiaxed grains, and the microstructure of the heat affected zone is mainly composed of α-Al and Al/MgZn2 eutectic microstructure. Extensive microhardness measurements were conducted in the weld regions of the nuggets exhibited a hardness loss in the fusion zone due to the loss of strengthening phases. Tensile properties test results indicated that tensile strength of these welds approached 82.3~85.3% of the base metal. The analysis of fracture surface has confirmed that the specimen fractured within the weld region during tensile test.

2021 ◽  
Vol 1027 ◽  
pp. 149-154
Author(s):  
Sen Dong Gu ◽  
Ji Peng Zhao ◽  
Rui Jie Ouyang ◽  
Yong Hong Zhang

In the present study, TA1 titanium alloy sheets with a thickness of 0.8mm were welded by electron beam welding. Microstructure of the welded region was investigated using optical microscope and electron backscattered diffraction. Then, the tensile test was conducted to analyse the tensile behavior of the welded sheets as well as the fractography of the fracture surfaces. It is shown that the mean grain size in the heat-affected zone is smaller than that in the fusion zone and base material. The strength of the base metal is lower than that of the fusion zone and heat-affected zone. The average values of the yield strength, tensile strength and elongation of the tensile specimens are 224MPa, 335MPa and 35%, respectively. In addition, the tensile specimens of the welded sheets suffer both ductile and brittle deformation during the tensile tests.


2019 ◽  
Vol 813 ◽  
pp. 25-30
Author(s):  
Kai Li ◽  
Peng Fei Fu ◽  
Zhen Yun Tang ◽  
Bo Zhang ◽  
Yan Long Ma ◽  
...  

Electron beam Surfi-SculptTM is a novel surface treatment technique applied to produce high level performance Composite-Metal-Weld (ComeldTM) joints. Investigation on forming process during electron beam Surfi-SculptTM on Ti-6Al-4V alloy showed protrusions were formed via a layer-by-layer mode like additive manufacturing process. The near-surface region of electron beam Surfi-Sculpted Ti-6Al-4V alloy was occupied by fusion zone, heat-affected zone and base metal from the outermost surface to the underlying bulk alloy. The microstructure of fusion zone was characterized by a high density of fine acicular martensite phase, leading to a higher micro-hardness. A heat-affected zone was sandwiched between fusion zone and the underlying base metal, with different microstructural features compared to both fusion zone and the base metal.


2013 ◽  
Vol 475-476 ◽  
pp. 1275-1279
Author(s):  
Qiang Zheng ◽  
Cheng Gang Yang ◽  
Yu He ◽  
He Chen ◽  
Ai Wu Yu

LY12 aluminum alloy was welded with vacuum electron beam welding, the effect of welding speed and electron beam current on the weld microstructure and mechanical properties of welding joints were studied, the results were shown that with the increasing of welding speed or decreasing of electron beam current, the grains in weld metal were refined, so the joint strength were increased. When the electron beam current was 18mA, the welding speed was 1000mm/min, the grains of weld metal were the finest, and the tensile strength was 373.2MPa. In addition, the micro-hardness of weld metal was much lower than base metal and heat affected zone, and the heat affected zone had certain softening phenomenon. With the increasing of welding speed or decreasing of electron beam current, the micro-hardness of weld metal was increased respectively.


Author(s):  
W. Rekik ◽  
O. Ancelet ◽  
C. Gardin ◽  
F. Hamon

In order to ensure the integrity of structures, failure assessment is required. In this context, the fracture behavior of an electron beam (EB) welded joint on thick plate of aluminum alloy 6061-T6 used for structural components of experimental nuclear reactors was investigated. In the particular case of welded structures, the tearing resistance is strongly dependent on the mismatch of the welded joint and the local behavior of each metallurgical zone. For a reliable analysis, the tensile mechanical behavior of each position of the welded joint was precisely determined by the use of a new measurement prototype. The toughness behavior under different configurations was then evaluated on CT specimens. From these experimental results a mechanical behavior contrast was highlighted. In fact, the fusion zone presents the lowest yield stress and a gradient is observed in the heat affected zone until the material behavior reaches of the base metal yield stress. On the contrary, the toughness of the welded zone is the highest and decreases strongly in the heat affected zone according to an exponential function until the base metal toughness is reached.


2015 ◽  
Vol 642 ◽  
pp. 230-240 ◽  
Author(s):  
A. Chamanfar ◽  
M. Jahazi ◽  
A. Bonakdar ◽  
E. Morin ◽  
A. Firoozrai

Author(s):  
Massab Junaid ◽  
Khalid Rahman ◽  
Fahd Nawaz Khan ◽  
Nabi Bakhsh ◽  
Mirza Nadeem Baig

Electron beam welding (EBW), pulsed Nd:YAG laser beam welding (P-LBW), and pulsed tungsten inert gas (P-TIG) welding of Ti–5Al–2.5Sn alloy were performed in order to prepare full penetration weldments. Owing to relatively high power density of EBW and LBW, the fusion zone width of EBW weldment was approximately equal to P-LBW weldment. The absence of shielding gas due to vacuum environment in EBW was beneficial to the joint quality (low oxide contents). However, less cooling rates were achieved compared to P-LBW as an increase in heat-affected zone width and partial α′ martensitic transformation in fusion zone were observed in EBW weldments. The microstructure in fusion zone in both the EBW and P-TIG weldments comprised of both acicular α and α′ martensite within the prior β grains. Hardness of the fusion zone in EBW was higher than the fusion zone of P-TIG but less than the fusion zone of P-LBW weldments due to the observed microstructural differences. Notch tensile specimen of P-LBW showed higher load capacity, ductility and absorbed energy as compared to P-TIG and EBW specimens due to the presence of high strength α′ martensite phase. Maximum sheet distortions and tensile residual stresses were observed in P-TIG weldments due to high overall heat input. The lowest residual stresses were found in P-LBW weldments, which were tensile in nature. This was owing to high power density and higher cooling rates in P-LBW operation. EBW weldment exhibited the highest compressive residual stresses due to which the service life of EBW weldment is expected to improve.


2005 ◽  
Vol 488-489 ◽  
pp. 371-376 ◽  
Author(s):  
Gang Song ◽  
Li Ming Liu ◽  
Mingsheng Chi ◽  
Ji Feng Wang

This paper presents results of recent investigations on the weldability of several wrought (AZ31, AZ61) and cast magnesium-based alloys (AZ91) by laser-TIG welding process. The investigations showed that magnesium alloys can be easily welded by laser-TIG welding. The grain of the fusion zone was finer than that of in base metal. The width of the heat-affected zone welded by laser-TIG welding process was obviously narrower than that of welded by TIG. Besides, with the Al content of magnesium alloys increasing, the width of the heat-affected zone (HAZ) was increased,as well as the content of β phase(Mg17Al12). The hardness in the fusion zone (FZ) and in HAZ of AZ61 and AZ91 has a large change to the base metal due to the existing of β phase, while no change relative for AZ31. It results from above discussing that laser-TIG welding is an excellent welding process for magnesium alloys.


Sign in / Sign up

Export Citation Format

Share Document