The Influence of Plasma Nitrocarburizing Process Temperature to Commercially Pure Titanium Surface Hardness

2013 ◽  
Vol 315 ◽  
pp. 700-704 ◽  
Author(s):  
Agung Setyo Darmawan ◽  
Waluyo Adi Siswanto ◽  
Tjipto Sujitno

Commercially pure (cp) titanium is a relative soft metal and easily broken on friction-wear applications. To improve the hardness of the surface while maintaining the original properties, plasma nitrocarburizing process has been conducted. The effects of the treatment in different temperatures to the surface harness are then studied. In this study, cp titanium plasma nitrocarburizing process is conducted at different temperatures with different process time, i.e. at 350 °C for 3, 4, and 5 hours, and at 450 °C for 2, 3, and 4 hours respectively. Hardness tests are then performed on each specimen by using Micro Vickers Hardness Tester. The hardness values for the plasma specimens nitrocarburizing processes at temperature of 350 °C for process duration of 3 hours, 4 hours, and 5 hours are 74.16 HV, 92.25 HV and 94.41 HV, respectively, while for processes at temperature of 450 °C, the hardness values are 103.70 HV, 121.31 HV, and 126.17 HV for process duration of 2 hours, 3 hours, and 4 hours respectively. Hardness value of specimens which are resulted from the plasma nitrocarburizing process at temperature of 450 °C is higher compared with specimens that are processed at temperature of 350 °C.

2013 ◽  
Vol 789 ◽  
pp. 347-351 ◽  
Author(s):  
Agung Setyo Darmawan ◽  
Waluyo Adi Siswanto ◽  
Tjipto Sujitno

Commercially pure (cp) titanium has a relative soft hardness property. In particular usage such as sliding, the improvement of the surface hardness will be required. In this study, surface hardness improvement of cp titanium by Plasma Nitrocarburizing and Ion Implantation are compared. Plasma Nitrocarburizing processes are conducted at different elevated temperatures with different duration processes, i.e. at 350 °C for 3, 4, and 5 hours, and at 450 °C for 2, 3, and 4 hours respectively, while Ion Implantation processes are conducted at room temperature and process durations are varied as 2.3 hours, 4.7 hours, and 9.3 hours. Nitrogen ions are used to implant the material. Hardness tests are then performed on each specimen by using Micro Vickers Hardness Tester. The surface hardness number (HV) for specimens of the Plasma Nitrocarburizing processes at temperature of 350 °C for process duration of 3 hours, 4 hours, and 5 hours are 74.16, 92.25 and 94.41, respectively while those at temperature of 450 °C for duration process of 2 hours, 3 hours, and 4 hours are 103.70, 121.31 and 126.17, respectively. The processes of Ion Implantation produce the surface hardness number (HV) of 88.97, 125.51, and 130.2, for duration processes of 2.3 hours, 4.7 hours, and 9.3 hours. The process of Ion Implantation produce higher surface hardness number than the Plasma Nitrocarburizing process at temperature 350 °C but the surface hardness number is lower when compared to the Plasma Nitrocarburizing at a temperature of 450 °C. For the duration processes 4 hours and more, the process of Ion Implantation produces the same surface hardness number with the Plasma Nitrocarburizing at temperature of 450 °C.


2019 ◽  
Vol 961 ◽  
pp. 97-106 ◽  
Author(s):  
Agung Setyo Darmawan ◽  
Waluyo Adi Siswanto ◽  
Bambang Waluyo Febriantoko ◽  
Abdul Hamid ◽  
Tjipto Sujitno

One of the surface treatments to improve the hardness of the surface is by ion implantation process. This paper presents an equation to predict the surface hardness with the variable of the process time in ion implantation surface treatment. The hardness of three surfaces data were collected experimentally from various process times, i.e. 140 minutes, 280 minutes and 560 minutes. Lagrange polynomial interpolation was then used to generate quadratic mathematical formula of the surface hardness based on experimental data. The verification results show that the proposed equation accurately predict the surface hardness of commercially pure (cp) titanium under ion implantation process with the error less than 0.5 %. This equation can be used to set the appropriate treatment process time to achieve the expected surface hardness without costly trial experimental settings.


2012 ◽  
Vol 548 ◽  
pp. 174-178 ◽  
Author(s):  
Chong Yang Gao ◽  
Wei Ran Lu

By using a dislocation-based plastic constitutive model for hcp metals developed by us recently, the dynamic thermomechanical response of an important industrial material, commercially pure titanium (CP-Ti), was described at different temperatures and strain rates. The constitutive parameters of the material are determined by an efficient optimization method for a globally optimal solution. The model can well predict the dynamic response of CP-Ti by the comparison with experimental data and the Nemat-Nasser-Guo model.


2018 ◽  
Vol 781 ◽  
pp. 101-107
Author(s):  
Yurii Ivanov ◽  
Olga V. Krysina ◽  
Pavel Moskvin ◽  
Elizaveta A. Petrikova ◽  
Olga V. Ivanova ◽  
...  

Commercially pure A7 aluminum was exposed to surface modification in a single vacuum cycle which included vacuum arc evaporation and deposition of commercially pure titanium and intense electron beam irradiation and melting of the film–substrate system using a plasma-cathode pulsed electron source. The deposited Ti film thickness was 0.5 and 1 μm. The irradiated Ti–Al system revealed a multilayer multiphase structure consisting of submicro-and nanosized elements with intermetallic inclusions Al3Ti, Al2Ti, and TiAl3. The Ti film during irradiation broke up into fragments with their immersion in the molten Al surface layer to a depth of 20 μm. The modified material surpassed the initial aluminum in wear resistance by a factor of 2.4 and in microhardness by a factor larger than 4. The main cause for the high surface hardness and high wear resistance of the modified aluminum was likely the formation of both the intermetallic particles and the Ti-hardened transition layer.


2019 ◽  
Vol 71 (10) ◽  
pp. 1166-1176
Author(s):  
Onur Çomakli ◽  
Mustafa Yazici ◽  
Tuba Yetim ◽  
Fatih Yetim ◽  
Ayhan Celik

Purpose This paper aims to investigate the structural, tribological and electrochemical properties of Ag2O, ZnO, NiO coatings and Ag2O/ZnO/NiO nanocomposite films deposited on commercially pure titanium. Design/methodology/approach Ceramic thin films (Ag2O, ZnO, NiO coatings and Ag2O/ZnO/NiO nanocomposite film) were deposited on commercially pure titanium (CP-Ti) substrate. Surface characterization of the uncoated and coated samples was made by structural surveys (scanning electron microscopic examinations and X-ray diffraction analyses), hardness measurements, tribological and corrosion experiments. Findings Results were indicated that sol-gel coatings improved the wear and corrosion resistance of CP-Ti, and the best results were seen at the nanocomposite coating. It may be attributed to its small grain size, high surface hardness and high film thickness. Originality/value This study can be a practical reference and offers insight into the influence of nanocomposite ceramic films on the increase of hardness, tribological and corrosion performance. Also, the paper displayed a promising approach to produce Ag2O/ZnO/NiO nanocomposite coating on commercially pure titanium implants for biomedical applications.


2012 ◽  
Vol 13 (4) ◽  
pp. 476-480
Author(s):  
Johnson Campideli Fonseca ◽  
Aloísio Oro Spazzin ◽  
Lucas Zago Naves ◽  
Ana Rosa Costa ◽  
Lourenço Correr-Sobrinho ◽  
...  

ABSTRACT Aim To evaluate the mechanical properties (ultimate tensile strength, elongation and hardness) of the commercially pure titanium (cp Ti) as casting and after ceramic firing cycles. Materials and methods Dumbbell-shaped specimens were prepared for the tensile strength testing. Disk-shaped cast specimens were used for microhardness testing. The ceramic firing cycles were made simulating a low fusion ceramic application. Tensile testing was conducted in a universal testing machine at a crosshead speed of 1 mm/min until failure. Ultimate tensile strength and elongation were recorded. The fracture mode was analyzed by scanning electron microscopy. Vickers hardness was measured in a hardness tester. The data from the tensile and hardness tests were subjected to a one-way analysis of variance and Tukey's test (α = 0.05). Results The mean values of tensile strength were not changed by the ceramic firing cycles. Lower hardness was observed for cp Ti as casting compared with Ti cast after the firing cycles. Clinical significance The ceramic firing cycles did not show any considerable prejudicial effects on the mechanical properties of the cp Ti. How to cite this article Fonseca JC, Spazzin AO, Naves LZ, Costa AR, Correr-Sobrinho L, Henriques GEP. Mechanical Properties of Cast Commercially Pure Titanium Simulating Ceramic Firing Cycles. J Contemp Dent Pract 2012;13(4): 476-480.


2017 ◽  
Vol 23 (2) ◽  
pp. 135
Author(s):  
Shijing Lu ◽  
Kunxia Wei ◽  
Yan Wang ◽  
Jing Hu

<p class="AMSmaintext">Commercially pure titanium (CP-Ti) was subjected to thermal oxidation at different temperatures and times for determining the optimum oxidation conditions to obtain the optimum corrosion resistance. The phase constituents of the samples were determined by X-ray diffraction (XRD), the morphology of the surface was observed by SEM, and the corrosion behavior was investigated using immersion test by exposing the samples in HCl solutions with a concentration of 37%. The results showed that Rutile TiO<sub>2</sub> layer was formed on the surface of CP-Ti after thermal oxidation and the thickness of the TiO<sub>2</sub> layer increased with the treating temperature. Meanwhile, It was found that the optimum corrosion resistance to HCl was obtained while oxidizing at 700℃ for 330min~500min.</p>


Author(s):  
Natthaphong KONKHUNTHOT ◽  
Patcharanut BURANAPIMA ◽  
Patipan BOONNITEE ◽  
Mahamasuhaimi MASAE ◽  
Peerawas KONGSONG

In the present work, pack carburization with rubberwood charcoal and rubberwood ash at 925 °C for 6, 12, and 24 h was carried out to improve the surface hardness of commercially pure titanium (CP-Ti).  X-ray diffraction and energy dispersive spectrometer analyses revealed the formation of titanium carbide (TiC) and the existence of oxygen diffusion in the carburized surface. The surface hardness of most optimized conditions has remarkably increased by 481 % as compared to untreated CP-Ti (from 175 HV to 1016 HV) due to the TiC surface layer, while the hardened oxygen diffusion layer of about 300 μm in-depth, as clearly seen in the microhardness profiles is useful for increased load-bearing capacity. Consequently, pack carburization with rubberwood charcoal and rubberwood ash is a promising surface modification technique, which can significantly enhance the surface hardness and increase the load-bearing capacity of CP-Ti for biomedical and tribological applications. HIGHLIGHTS Rubberwood charcoal and ash are a new carbon source to fabricate the TiC layer on CP-Ti. Formation of the TiC layer remarkably enhances the surface hardness of CP-Ti by 481 %. The hardened oxygen diffusion layer is beneficial to load-bearing and anti-wear capacity. GRAPHICAL ABSTRACT


Sign in / Sign up

Export Citation Format

Share Document