Microwave Induced Pyrolysis of Biomass

2013 ◽  
Vol 319 ◽  
pp. 127-133 ◽  
Author(s):  
Kai Qi Shi ◽  
Tao Wu ◽  
Hai Tao Zhao ◽  
Edward Lester ◽  
Philip Hall ◽  
...  

Microwave heating has attracted much attention recently due to its nature of volumetric heating and instant heating. In this study, microwave heating was adopted not only as a heating method but also an approach to enhance the pyrolysis of biomass. Microwave induced pyrolysis was carried out at 500°C with silicon carbide as a microwave energy absorber. Conventional pyrolysis of gumwood was also conducted under the same operating temperature as microwave-enhanced pyrolysis. The yields of pyrolytic bio-oil and bio-gas under microwave heating are 8.52 wt% and 73.26 wt% respectively, which are higher than the products obtained via conventional methods under similar operating conditions. A series tests were performed to compare the difference between the yields of pyrolytic products, i.e. gaseous products (bio-gas), liquid products (bio-oil) and solid products( bio-char). Scanning Electron Microscope (SEM), Gas Chromatograph/Mass Spectrum (GC-MS) and Gas Chromatograph (GC) were used in this study to characterize the morphology of bio-chars, the composition of bio-gas and bio-oil respectively. The bio-oil produced via microwave pyrolysis has simpler constituents compared with that produced via conventional pyrolysis. The proportion of syngas (H2+CO) and methane (CH4) in the gas product produced under microwave-enhanced pyrolysis are 62.52 vol % and 22.41vol % respectively, which are higher than those in the products of conventional pyrolysis. It is clear that microwave-enhanced pyrolysis has shown a great potential as an alternative method for biomass conversion.

Author(s):  
J. Rhett Mayor ◽  
Alexander Williams

The search for fossil fuel alternatives has been one of increasing interest in recent years and one method which shows evidence of feasibility on a large scale is the production of bio-oil through the pyrolysis of biomass. In order to mathematically characterize biomass pyrolysis reactions for the purpose of process modeling, reaction descriptors in the form of Arrhenius coefficients are frequently utilized. Due to the complexity and inhomogeneity of biomass molecular structures, strictly analytically derived Arrhenius coefficients are not capable of predicting pyrolysis behaviors and outcomes. Typically thermogravimetric analysis (TGA) is employed as a method of extracting mass conversion data as a function of temperature from which bulk reaction descriptors following the form of Arrhenius reaction coefficients are derived. The preceding time and temperature history, however, will have a significant impact on the biomass conversion processes at each subsequent data point. This renders derived process predictors from TGA incapable of approximating fast pyrolysis reactions which have a markedly different time and temperature history than is seen utilizing TGA methods. Experimentally derived reaction descriptors of the Arrhenius form for the fast pyrolysis of biomass have been investigated utilizing a novel isothermal fast pyrolysis reactor. Multiple reaction durations and reaction temperatures for Pinus Taeda were tested resulting in measurements of biomass conversion. Reaction coefficients derived from the data are compared to coefficients derived utilizing TGA data and their predictions for mass conversion are contrasted.


2013 ◽  
Vol 319 ◽  
pp. 227-232 ◽  
Author(s):  
Kai Qi Shi ◽  
Tao Wu ◽  
Hai Tao Zhao ◽  
Edward Lester ◽  
Yao Dong Wang

Co-processing of biomass with coal has become a promising approach for the efficient utilization of biomass and a feasible option to reduce coal consumption. Normally, biomass and coal blends are normally processed using conventional heating methods, such as co-pyrolysis, co-firing and co-gasification. Due to the fact that microwave heating has many advantages against conventional heating methods in terms of its volumetric heating and instant heating nature, in this study, biomass and coal blends were co-processed under microwave heating to enhance possible synergistic effect to improve the yield and quality of products. Biomass and coal blends were prepared in different mass fraction. Both conventional pyrolysis and microwave induced co-processing tests were carried out. The solid, liquid and gas products were analysed using scanning electron microscopy (SEM) and gas chromatography – mass spectrum (GC-MS). Results showed that in conventional pyrolysis, mole fraction of CO2 is relatively high whilst that of H2 is relatively low. However, for microwave induced co-processing of biomass coal blends with a mass fraction of biomass around 10wt%, the mole fraction of H2, CO and CH4 could be as high as 85%. This indicates the existence of synergy when biomass is co-processed with coal. In the liquid product, it was also found that the distribution of liquid products under microwave induced pyrolysis is much narrow compared with that of liquid products produced under conventional pyrolysis.


2019 ◽  
Vol 37 (5) ◽  
pp. 516-529 ◽  
Author(s):  
Ersin Üresin ◽  
Işıl Işık Gülsaç ◽  
Mustafa Salih Budak ◽  
Mehmet Ünsal ◽  
Kader Özgür Büyüksakallı ◽  
...  

In this study, the production of bio-oil from the pyrolysis of furniture sawdust, waste lubricating oil and their mixtures were investigated under certain operating conditions in the presence of lime and zeolites, by using a laboratory scale horizontal tubular reactor placed in a furnace. The main focus was to investigate the mutual effect of lime and commercial zeolite on the amount of the bio-oil production from furniture sawdust and waste lubricating oil. The selected operating parameters were pyrolysis temperatures and heating rate of 300°C and 650°C and flash heating or gradual heating rate (30°C/min). Additionally, three different additives were tested as catalysts; namely, lime (CaO), commercial zeolite (4A) and a natural zeolite (klinoptilolite). The amount of the produced bio-oil was analyzed by gas chromatography–flame ionization detector. The distribution of solid, liquid and gaseous products was determined for each operational condition. It was seen that the amount of the bio-oil was influenced by the amounts of sawdust and zeolite in the mixture. Experimental results showed that higher temperatures were more effective for the higher bio-oil amount. Additionally, heating rate was quite significant at 300°C whereas it has a minor effect on the bio-oil amount at 650°C. The highest bio-oil yield was obtained for the mixture of sawdust and waste lubricating oil in the presence of both lime and commercial zeolite with flash heating rate at 650°C.


Author(s):  
Isabelle Polaert ◽  
Lilivet Ubiera ◽  
Lokmane Abdelouahed ◽  
Bechara Taouk

The pursuit of sustainable relationship between the production and consumption of energy has accelerated the research into new fuels alternatives, and mainly focused on new technologies for biomass based fuels. Microwave pyrolysis of biomass is a relatively new process which has been long recognized to provide better quality bio-products in shorter reaction time due to the direct sample heating and the particular heating profile resulting from the interaction of biomass with the electric field component of an electromagnetic wave [1,2]. During the course of this research, flax shives were pyrolysed using a rotatory kiln reactor inside a microwave single mode cavity using a range of power between 100 and 200 watts, to reach a temperature range between 450 °C and 650°C. The liquid bio-oil samples recovered in each case were analyzed though gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID) to identify and quantify the different molecules presents and paying a particular attention to the BTX’s concentration. More than two hundred compounds were identified and grouped into families such as carboxylic acids, alcools, sugars for a deep analysis of the results. The effect of the operating conditions on the proportion of gas, liquid and char produced were studied as well as some properties of the pyrolysis products. In most cases, carboxylic acids were the dominating chemical group present. It was also noticed that the increase of temperature enhanced the carboxylic acids production and diminished the production of other groups, as sugars. Finally, pyrolysis oils were produced in higher quantities by microwaves than in a classical oven and showed a different composition. The examination of the pyrolytic liquid products from different biomass components helped to determine the provenance of each molecule family. On the operational side, the rotatory kiln reactor provided a fast and homogeneous heating profile inside the reactor, desired for fast pyrolysis. The high temperature was maintained without making hot spots during the reaction time. The microwave irradiation setup consisted in a single-mode cavity, a system of plungers, incident and reflected power monitors, an isolator and a 2.45 GHz continuous microwave generator with a power upper limit of 2000 watts. The plunger system was calibrated to maintain a range of reflective wave between 5 and 15%, taking advantage of a minimum of 85 percent of the applied power. In conclusion, the developed microwave pyrolysis process gives a clear way to produce an exploitable bio-oil with enhanced properties.   References Beneroso, D., Monti, T., Kostas, E., Robinson, J., CEJ, 2017.,316, 481- 498. Autunes E., Jacob M., Brodie, G., Schneider, A., JAAP, 2018,129, 93-100.


2021 ◽  
Vol 333 ◽  
pp. 12005
Author(s):  
Siyi Li ◽  
Jeffrey S. Cross

Recyclable catalysts are desperately needed for upgrading pyrolyzed bio-oil which is produced from biomass conversion in order to reduce cost and protect the environment. However, most catalysts used for producing bio-oil from the pyrolysis of biomass cannot be recycled, leading to costly catalyst regeneration or waste if disposed of. In this study, Ni2Fe3 has been chosen as the model catalyst to test the recyclable property of the metal cluster catalyst system. Cellulose is used as the biomass model reactant. The results from pyrolysis experiments and GC-MS show that the catalytic property of Ni2Fe3 remains constant even after repeated experiments. From the analysis of bio-oil by GC-MS, the catalyst even shows slightly better performance with repeated use due to the pyrolytic interaction with cellulose during the experiment.


Author(s):  
J. Rhett Mayor ◽  
Alexander Williams

Bio-oils were produced within a fast-pyrolysis micro-reactor at 400°C from Loblolly Pine (Pinus Taeda) with varying residence times. This preliminary study has considered two boundary values for the residence time, evaluating the products of the reaction at 20 seconds and 120 seconds. The collected bio-oils were analyzed for their calorific values (LHV) and biomass conversion efficiencies. Heating rates greater than 100°C/s were achieved for the biomass, allowing for isothermal conditions to exist throughout the majority of the reaction despite short residence times. This study shows the effect that reaction duration has on the mass of the bio-oil yield and energy content present for the isothermal fast pyrolysis of Loblolly Pine and evaluates the predictive capabilities of TGA derived Arrhenius coefficients.


Author(s):  
Anthonia E Eseyin ◽  
Kieran I. Ekpenyong ◽  
S. M Dangoggo ◽  
Onyanobi Abel Anyebe ◽  
Emad M El-Giar

In view of the global energy crises and the ongoing renewable energy studies, clear understanding of the product distribution in the pyrolysis of lignocellulose from different corn plant components is required. Unextracted lignocellulose from the dry corn stalks was pyrolysed at 200oC and 250oC for 30 minutes, 60 minutes, 90 minutes and 120 minutes, respectively in an in house reactor. Liquid (bio-oil), gaseous and solid (bio-char) products were obtained. Their volumes and masses were determined. The volumes of the liquid and gaseous products produced increased with retention time and temperature while the masses of the solid products decreased with retention time and temperature. The pyrolysed corn stalks produced 17.93% bio-oil, 43.33% bio-char and 38.74% gases. The reaction order and rate constants were determined. The reaction was found to be first order. The bio-oil compounds that were detected by GCMS were identified from the MS library and characterized into: acids, ester, alcohol, phenol, alkane, multicomponent compounds and miscellaneous oxygenates. The bio-oils samples obtained were shown to be comparable with those produced by other processes.


2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


Sign in / Sign up

Export Citation Format

Share Document