Recovery of Copper from Flotation Tailings by Leaching

2013 ◽  
Vol 325-326 ◽  
pp. 128-132 ◽  
Author(s):  
Dan Liu ◽  
Shu Ming Wen ◽  
Yong Jun Xian ◽  
Hai Ying Shen ◽  
Jiu Shuai Deng ◽  
...  

A technology route of Reverse flotation of acid-consuming gangue mineralsAcid leaching for copperExtractingElectrodepositing is proposed for recovery copper from a tailings with high content of calcium oxide and magnesium oxide and high content of combined copper oxide. The effect of H2SO4concentration, leaching time and stirring speed on copper leaching was investigated. The leaching solution obtained under the optimal copper leaching conditions, was used to be proceeded for extracting and electrodepositing test. The best leaching conditions are stirring speed of 30 m/min, H2SO4concentration of 150 Kg/t ore, leaching time of 30 minutes. Under the best conditions, the acid leaching test presented that the production of per ton copper consumes sulfuric acid of 17.31 t, and Cu leaching rate is 84.70%.

2013 ◽  
Vol 634-638 ◽  
pp. 3412-3415
Author(s):  
Dan Liu ◽  
Shu Ming Wen ◽  
Yong Jun Xian ◽  
Jiu Shuai Deng

A technology route of “Reverse flotation of acid-consuming gangue minerals–Acid leaching for copper–Extracting–Electrodepositing” is proposed for recovery copper from tailings with high content of calcium oxide and high content of combined copper oxide. The effect of the main factors involving regulator dosage, collector type and dosage was investigated. On this regard, a open-circuit flotation test scheme was proceeded, by which a concentrate was obtained with 3.84% of CaO grade, 71.57% of CaO recovery, 0.82% of Cu grade and 79.76% of Cu recovery. This concentrate can be directly used for the production of sulfuric acid leaching and preparation of electrolytic copper. This technology can be used to fully utilize Cu from tailings, which will help to extend raw material sourcing for Chinese Cu industry.


2011 ◽  
Vol 361-363 ◽  
pp. 628-631 ◽  
Author(s):  
Cheng Jun Liu ◽  
Jie Qi ◽  
Mao Fa Jiang

Utilizing Pakistan chromite as raw material, the rapid leaching of chromium and iron could be realized by the sulfuric acid leaching process on the condition of atmospheric pressure and the addition of oxidant A. And the leaching rate of chromium and iron would be 98.5% and 71.9%, respectively. The sulfuric acid leaching processes with different temperature were systematically studied by chemical analysis and phase analysis. The results showed that, with the increase of reaction temperature, the leaching rate of chromium would increase gradually, but the leaching rate of iron increased at first and then decreases and reached its maximum at 140°C. When the temperature > 160°C, the phases of the leaching residue were magnesium iron silicate and a few of silica, no chromohercynite, chrompicotite and magnesioferrite existed in the chromite. The leaching solution of sulfuric acid leaching process could be used for preparing the basic chrome sulfate, and there is no Cr6+ in the leaching residue and solution. The results would provide theoretical guidance for solving environmental pollution problem of Cr6+ in traditional chromate production process.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1375
Author(s):  
Juan Yang ◽  
Xuqin Duan ◽  
Lingchuan Liu ◽  
Huifen Yang ◽  
Xiaocui Jiang

This paper provides a technical approach for efficiently recovering Mg from ferronickel slag to produce high-quality magnesium oxide (MgO) by using the sulfuric acid leaching method under atmospheric pressure. The leaching rate of magnesium is 84.97% after a typical one-step acid leaching process, which is because Mg in FNS mainly exists in the forsterite (Mg2SiO4) phase, which is chemically stable. In order to increase the leaching rate, a two-step acid leaching process was proposed in this work, and the overall leaching rate reached up to 95.82% under optimized conditions. The response surface methodology analysis for parameter optimization and Mg leaching rules revealed that temperature was the most critical factor affecting the Mg leaching rate when the sulfuric acid concentration was higher than 2 mol/L, followed by acid leaching time. Furthermore, interactive behavior also existed between the leaching temperature and leaching time. The leaching kinetics of magnesium from FNS followed a shrinkage-nuclear-reaction model with composite control, which were chemically controlled at lower temperatures and diffusion controlled at higher temperatures; the corresponding apparent activation energy was 19.57 kJ/mol. The leachate can be used to obtain spherical-like alkali magnesium carbonate particles with diameters of 5–10 μm at 97.62% purity. By using a further calcination process, the basic magnesium carbonate can be converted into a light magnesium oxide powder with a particle size of 2–5 μm (MgO content 94.85%), which can fulfill first-level quality standards for industrial magnesium oxide in China.


2021 ◽  
pp. 105799
Author(s):  
Chengjin Xu ◽  
Ling Li ◽  
Miaomiao Zhang ◽  
Xiao Meng ◽  
Xiujing Peng ◽  
...  

2013 ◽  
Vol 591 ◽  
pp. 122-125
Author(s):  
Li Jiao Yang ◽  
Si Chen ◽  
Yan Zhang ◽  
Nan Chun Chen ◽  
Jun Gao ◽  
...  

Extracting indium from water quenching slag, which contains poor indium, by two process of leaching, the effect of different oxidants and dosages on the leaching rate of indium in water quenching slag were studied. The leaching conditions: temperature 80 °C, leaching time 2 h, the liquid to solid ratio of neutral leaching 8︰1, the liquid to solid ratio of acid leaching 2︰1, initial concentration of sulfuric acid 500 g·L-1, adding different oxidants, the concentration was detected by crystal violet spectrophotometry. Test results showed that the leaching rate of indium was significantly improved by adding hydrogen peroxide and potassium permanganate. Compared with the effect of different oxidants, the effect of potassium permanganate was significantly higher than that of hydrogen peroxide on the leaching rate of indium.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Gai-rong Wang ◽  
Hong-ying Yang ◽  
Yuan-yuan Liu ◽  
Lin-lin Tong ◽  
Ali Auwalu

Abstract The XRF, XRD, polarizing microscopy and SEM-EDS were used to study the alteration mechanism of copper-bearing biotite and the leachable property of copper-bearing minerals in Mulyashy Copper Mine, Zambia. It was found that biotite can be divided into copper-bearing biotite and copper-free biotite. Some copper-bearing biotite existed in the form of monomer, and others aggregated with copper-bearing chlorite, malachite or copper-bearing limonite. The main reason for the occurrence of biotite aggregations was that copper-bearing biotite underwent two kinds of alteration mechanisms as follows: altering into copper-bearing chlorite and malachite, and altering into copper-bearing chlorite and copper-bearing limonite. The order of factors effecting the copper leaching rate of the ores in acid leaching experiments was temperature > sample size > H2SO4 concentration > leaching time > stirring speed. In addition, the copper leaching rate of copper-bearing minerals at different temperatures was in the following order: malachite, chrysocolla and pseudomalachite > copper-bearing chlorite > copper-bearing muscovite > copper-bearing biotite > copper-bearing limonite. The leachable property of biotite is closely related to its special structure.


2012 ◽  
Vol 454 ◽  
pp. 329-332 ◽  
Author(s):  
Jin Lin Yang ◽  
Shao Jian Ma ◽  
Wei Mo ◽  
Jin Peng Feng ◽  
Xiu Juan Su ◽  
...  

In this paper, the conventional physical separation method such as flotation, gravity separation, magnetic separation, alkaline leaching and sulfuric acid leaching were studied. The effects of grinding fineness, amount of agent, magnetic intensity, roasting temperature, roasting time, the leaching agent and leaching time on the leaching of zinc were investigated, respectively. The results show that the leaching rate of zinc is below 50% in the conventional alkaline leaching, and the leaching rate of zinc is below 85% and the leaching rate of iron is above 35% in sulfuric acid leaching. Compared with XRD pattern of the raw ore, the different diffraction peaks of smithsonite is off in alkaline leaching products. In sulfuric acid leaching, the different diffraction peaks of smithsonite are off in the leaching products when sulfuric acid concentration is less than 60 g/L. After 60 g/L, the different diffraction peaks of smithsonite and siderite are off in the leaching products.


2013 ◽  
Vol 826 ◽  
pp. 118-121
Author(s):  
Jin Lin Yang ◽  
Hong Mei Zhang ◽  
Xiu Juan Su ◽  
Shao Jian Ma

In recent years, recovering zinc from zinc calcine with high iron has been a matter of discussion. In this paper, sulfuric acid leaching was carried out to assess the effect of several parameters on zinc and iron extraction in zinc calcine with high iron in which the grade of zinc and iron is 53.90% and 19.38%, respectively. Parameters, such as stirring speed, sulfuric acid concentration, liquid to solid ratio and leaching time, were investigated. The results show that leaching time has done nothing to the leaching rate, but has great influence on leaching efficiency. Liquid to solid ratio and sulfuric acid concentration have significant influence on leaching results, and stirring rate has not obvious influence on leaching results. Under the condition of 120g/L sulfuric acid, 6:1 liquid to solid ratio, 55°C leaching temperature and 120min leaching time, the recovery of zinc and iron is 82.24% and 9.64%, respectively. It is obvious that ZnO in zinc calcine is easy to dissolve in acidity solution, which shown in two aspects: high leaching rate and high leaching speed. ZnO can be dissolved entirely in sufficient sulfuric acid in 10min.


2013 ◽  
Vol 785-786 ◽  
pp. 1087-1090
Author(s):  
Ying Bo Mao ◽  
Zhi Cong Wei ◽  
Jian Jun Fang ◽  
Shan Wang ◽  
Tie Min Zhang

Leaching test on the Oxidized Zinc Ore coming from Yunnan Province is studied in the H2SO4 system;Systematic studies are made to show the effects of various factors on the leaching rate of zinc. The optimum conditions for leaching is finally confirmed, namely the grinding size is 75% of-0.074mm, concentration of sulfuric acid 15%, temperature 60°C, solid to liquid ratio 3:1, and leaching time 2.5h. Ultimately, the leaching rate of Zn could reach more than 59%.


2011 ◽  
Vol 287-290 ◽  
pp. 2952-2956
Author(s):  
Yong Gang Li ◽  
Da Jin Yang ◽  
Jian Rong Peng ◽  
Xiao Ying Li

An experimentation project has been put forward to enrich indium from sulfuric acid leaching solution bearing high content of indium: preneutralization using calcine---reduction using zinc sulfide concentrate---neutralization using limestone for precipitating indium, and ascertained optimal dosage of reagent in every procedure through experiment under certain condition: the dosage of calcine is 1.3 times of theoretic value, the dosage of zinc sulfide mineral concentrate is 2.2~2.3 times of theoretic value, the dosage of limestone is double of theoretic value. On this optimal condition, the straight recovery rate of indium is more than 97%, and the content of indium sediment from precipitating is more than 0.1%.


Sign in / Sign up

Export Citation Format

Share Document