Study on the Performance-Based Aseismic Design for RC Frame with Mild Steel Shear Damper

2014 ◽  
Vol 1065-1069 ◽  
pp. 1513-1517
Author(s):  
Zhen Huang ◽  
Rui Qiu Li ◽  
Lin Zhi Yang

The performance-based design of structure can reach the performance objectives under different earthquakes. Mild steel shear dampers (MSSDs) have a good and stable energy dissipation capacity, and are widely used in seismic reduction structure. This paper presents a performance-based aseismic design method for RC frame with mild steel shear dampers, the numerical model of frame was established by SAP2000, then seismic performance of the frame was studied by time history analysis. Compared with pure frame, the inter-story drift ratio of MSSD frame is significantly decreased under frequent, moderate and rare earthquake respectively, and the performance objectives are satisfied, demonstrating the effectiveness of the performance-based aseismic design method.

2013 ◽  
Vol 353-356 ◽  
pp. 2177-2180
Author(s):  
Hao Ming Cai ◽  
Zhong Tao ◽  
Xin Li Cao

In this paper, we calculate and analyze a tall building project of seismic isolation design. It is a frame-shear wall structure, which has twelve stories on the ground. And then, we use the time history analysis method to calculate the isolation structure. It is found that isolation equipment can extend the period of the structure, reduce the story drift in frequency earthquake. And it also can control the response of the structure. In rare earthquake, the story drift can meet the demand of unclasped; the displacement and force of the equipment can satisfy the demand of the code for seismic design of building.


Author(s):  
Kugan K ◽  
Mr. Nandha Kumar P ◽  
Premalath J

In this study, four geometrically similar frames having different configurations of masonry infills, has been investigated. In this article attempts are made to explain the factors that impact the soft storey failure in a building are compared with different type of infill. That is Four models like RC bare frame, RC frame with brick mansonry infill, RC frame with brick infill in all the storeys exept the firstsoft storey, RC frame with inverted V bracing in the soft storey. Time history analysis has been carried out for a G+8 multistoried building to study the soft storey effect at different floor levels using E tabs software. The behavior of RC framed building with soft storey under seismic loading has been observed in terms of maximum displacement ,maximum storey drift, base shear and storey stiffness as considered structure.


2010 ◽  
Vol 163-167 ◽  
pp. 1100-1106
Author(s):  
Jun Teng ◽  
Wei Liang Guo ◽  
Bai Sheng Rong ◽  
Zuo Hua Li ◽  
Zhi Jun Dong

Diagrid tube structures have advantages on constructing high-rise buildings for its great lateral stiffness, but its seismic design methodology researches are limited. The two-stage design method in Chinese code is not specific enough for the seismic fortification objectives of this kind of structures. It is necessary to propose some specific seismic performance objectives for the key components. Typical CFST diagrid tube-concrete core tube structures are studied by dynamic elastic-plastic time-history analysis using Perform-3D program. The structure plasticity developing process is summarized and the distribution characteristics of seismic fortification lines between tubes are discussed. The influences of main structure lateral stiffness related factors on the plasticity developing process are researched. The key components of structure lateral stiffness and plastic energy dissipation are studied. The seismic performance objectives of the key components are proposed for the three-level seismic fortification objectives.


2011 ◽  
Vol 243-249 ◽  
pp. 740-745 ◽  
Author(s):  
Qing Ning Li ◽  
Qing Mei Liu ◽  
Lin Zhao

A steel reinforced concrete frame-concrete core wall structure is taken as the research object in this paper. The whole space finite element models are established by software ETABS, modal analysis, response spectrum method and elastic time-history analysis are conducted. And static elastio-plastic time history analysis of the high-rise structure is conducted by software MIDAS/GEN. Seismic response of the high-rise structure is analyzed under medium earthquake and rare earthquake , elastic deformation is calculated under conventional earthquake and elastic-plastic deformation is calculated under rare earthquake. The results show that the structure can meet the requirements of no-damage under light earthquake, repairable under medium earthquake and no-collapse under strong earthquake.


2019 ◽  
Vol 10 (2) ◽  
pp. 166-184
Author(s):  
Johnny Setiawan ◽  
Iswandi Imran

Terdapat cukup banyak perubahan pada SNI 1726-2012, salah satunya adalah adanya persyaratanbatas geser dasar minimum (minimum base shear) yang tidak ada pada peraturan sebelumnya.Metode yang akan dilakukan adalah bangunan gedung dengan klasifikasi ketinggian rendah,sedang dan tinggi akan dianalisis dengan menerapkan geser dasar minimum dan tanpa geser dasarminimum. Analisis yang akan digunakan adalah analisis ragam spektrum respons (ResponsSpectrum Analysis, RSA), analisis respons riwayat waktu (Time History Analysis, THA) dananalisis respons riwayat waktu non linier (Non Linear Time History Analysis, NLTHA). Hasilanalisis menunjukkan bahwa pada peraturan SNI 1726-2012 dengan adanya persyaratan batasangeser dasar minimum dapat menjamin kinerja struktur sesuai dengan yang diharapkan.Kekhawatiran adanya batasan geser dasar minimum pada SNI 1726-2012 akan membuat desainmenjadi tidak ekonomis, ternyata tidak terbukti karena tidak memberikan pengaruh signifikanpada hasil desain, khususnya untuk bangunan dengan kategori ketinggian rendah dan sedang.Untuk bangunan dengan klasifikasi bangunan tinggi, analisis dan desain dengan memperhitungansyarat batasan geser dasar minimum dan tanpa memperhitungkan geser dasar minimum dapatmemberikan hasil desain yang baik, tetapi pengecekan pada Level Kinerja (Performance Level)sesuai dengan story drift menunjukkan bahwa analisis dengan memperhitungkan syarat geser dasarminimum memberikan hasil dengan level kinerja yang cukup baik yaitu Immediate Occupancy(IO) hingga Damage Control (DO), sedangkan tanpa memperhitungkan geser dasar minimummemberikan hasil dengan level kinerja yang kurang baik yaitu Life Safety (LS) hingga StructuralStability (SS). Sedangkan pada level kinerja elemen struktur, analisis tanpa memperhitungkangeser dasar minimum menyebabkan banyak elemen struktur yang berada pada level kinerjaCollapse Prevention (CP).


2012 ◽  
Vol 517 ◽  
pp. 749-754
Author(s):  
Jin Jie Men ◽  
Qing Xuan Shi ◽  
Qi Zhou

The procedure to establish the inter-story capacity spectrum method is explained detailedly in partⅠ. In this part examples are presented to demonstrate the applicability and utility of the proposed method. It is shown that the vertically irregular RC frame structure can be directly designed with the methodology proposed in this work. It is also concluded that the new method can control the inter-story drift, the order and position of hinges of vertically irregular structures under different earthquake hazard level. Comparing to time history analysis method, it leans to cautious and is superior to direct displacement-based design (DDBD).


2011 ◽  
Vol 243-249 ◽  
pp. 1288-1295
Author(s):  
Tao Lan ◽  
Ji Ping Hao ◽  
Si Yuan Zhao ◽  
Xiao An Wang

Based on the research of Life Ring in Shen Fu, the basic criteria for structural design of the unconventional rigid mega-structure linked with the ground are proposed in this paper. Through the structure comparison and selection, the space steel truss is used as the optimal structure form. After static analysis and time-history analysis by FEM, it is found that the control load case is the combination of dead weight and wind load. Because of its long vibration period, the structure is not sensitive during an earthquake. The key design of the structure is the selection of foundation form, a mixed-foundation made of steel trusses with piles is proposed in this paper. The steel truss is used as a bridge which transmits forces between superstructure and foundation. At last, the pile foundation is classified by the loading mechanism, the analysis and design of key joints in the mixed-foundation is proposed.


2012 ◽  
Vol 204-208 ◽  
pp. 1150-1153
Author(s):  
Min Chen ◽  
Guo Jing He ◽  
Chang Liu

Energy dissipation structure is favored by designers because the earthquake energy can be dissipated by the dampers, which can avoid or reduce the damage caused by earthquake. However, the energy dissipation structure design is complex and the most domestic designers can not master it easily. In this paper, a simple and practicable design method for viscous damper dissipation structure by using the PKPM design software is proposed based on a 7-storey frame structure in highly seismic region. Firstly, lower half or one degree for the design intensity to design out an uncontrolled structure. Secondly, determine the supplemental damping ratio required for the fortification intensity via modal analysis method of PKPM software, and identify the numbers of the required dampers as well as their corresponding installation positions in line with the methods in the seismic code of China. Finally, the ETABS program is adopted to conduct the time-history analysis of the designed dissipation structure, showing that the proposed method in this paper can produce a satisfied result.


2012 ◽  
Vol 594-597 ◽  
pp. 1532-1536
Author(s):  
Yun Zhang ◽  
Xiu Feng Huang ◽  
Bei Li

Take one long span double-curved arch bridge as the example, built the finite element model of bridge structure and analyzed the modeling method, dynamic features and response under ground motion. It demonstrates that response spectrum method could meet the calculation requirement in seismic analysis of the double-curved arch bridge, and the result accords with time-history analysis method. Bridge vibration type is dispersing in quality distribution of double-curved arch bridge; it should take adequate vibration types in bridge combination. At frequent earthquake, it is actual to considerate the coalition function between arch crown structure and the main arch ring. But at rare earthquake, the arch crown buildings of masonry structure is easy to be damaged, it is not suitable to considerate the coalition function in bridge reinforcement.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1397-1401
Author(s):  
Zhen Huang ◽  
Zuo Wei Qin ◽  
Peng Wu

This paper presents a reinforcement design of five-story R/C structure with mild steel dampers in high seismic fortification intensity site. The details of the design process are listed in the paper, and the time history analyses under frequent and rare earthquake are performed on structure models with and without dampers. Through the comparison, the peak of maximum story drifts angles with damper-added structural is reduced by 38% and the distribution is more uniformly. The results show that energy-dissipation design with mild steel dampers can be a reliable and effective method in reducing seismic responses of reinforcement structure.


Sign in / Sign up

Export Citation Format

Share Document