scholarly journals Numerical Triaxial Apparatus and Application

2013 ◽  
Vol 353-356 ◽  
pp. 3251-3255 ◽  
Author(s):  
Xiao Liang Wang ◽  
Jia Chun Li

A numerical triaxial apparatus based on discrete element method is developed on the platform of Yade using Python script. A DEM model with rolling resistance contact considered is proposed for dense granular materials, which is then applied in triaxial compression test of Chende sand. Stress-strain response and volume-axial strain response of the DEM model agree well with that of experiments, with a good prediction of dilatancy angle. Degradation of granular materials duo to particle erosion is also investigated using triaxial compression tests. It is indicated that peak friction angle decreases with the remove of particles if strong force network of granular materials is destroyed.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yang Zhang ◽  
Yongjie Yang ◽  
Depeng Ma

In order to understand the influence of unloading path on the mechanical properties of coal, triaxial unloading confining pressure tests with different initial confining pressure and different unloading rate were carried out. The test results show that the triaxial unloading strength of coal samples under different test conditions is lower than conventional triaxial tests, but the brittleness characteristics are more obvious. This result indicates that the coal samples are easily damaged under unloading conditions. In the axial loading stage of the confinement unloading tests, the axial strain plays a leading role. However, during the confining pressure unloading stage, the circumferential deformation is large, which is the main deformation in this stage. Higher unloading rates of confining pressure are associated with shorter times between the peak stress position and sample complete failure. This shows that samples are more easily destroyed under higher unloading rates and the samples are more difficultly destroyed under lower unloading rates. In addition, with increasing unloading rate, the peak principal stress difference and confining pressure at failure decrease gradually, whereas the confining pressure difference at failure increases gradually. Compared with conventional triaxial compression tests, the cohesion of coal is reduced and the internal friction angle is increased under the condition of triaxial unloading test.


2016 ◽  
Vol 10 (1) ◽  
pp. 524-531 ◽  
Author(s):  
Yan Chen ◽  
Linjian Ma ◽  
Pengxian Fan ◽  
Xupu Yang ◽  
Lu Dong

Post-yield strength and deformation properties of rock salt are of great importance to the stability of rock surrounding deep underground storage caverns. Uniaxial and triaxial compression tests were performed to explore the volume change of Qianjiang rock salt under different confining stress states. The experimental results indicate that the dilatancy angle first increases rapidly then decreases gradually and drives to a constant with equivalent plastic strain. A higher confining stress results in a lower peak dilatancy angle. With the increase of confining pressure, the dilatancy angle decreases nonlinearly. Based on the volumetric-axial strain curves of rock salt, a mobilized dilatancy angle model taking into account the effects of confining pressure and the equivalent plastic strain was developed using nonlinear fitting. The new model was implemented in the software FLAC3D and verified effective to predict the volumetric dilatancy behavior of rock salt.


2021 ◽  
Vol 16 (59) ◽  
pp. 374-395
Author(s):  
Anouar Souadeuk ◽  
Zeineddine Boudaoud

Columns of mixed soil-sand-cement (CSV), is one of the most unknown used methods for soft soil stabilization that has not been studied before. To this end, in this paper, consolidated drained (CD) triaxial compression tests after have been cured for 28 days, were carried out to investigate the effectiveness of CSV, which is mainly used to reinforce soft soil. Then, the influence of soft soil content (25%, 50%, 75%) on materials of CSV with/without polypropylene (PP) fibers is established. The percentages of soft soils (50%, 75%) are experimentally doable and the remaining percentage (25%) was not successfully experimented; for this exact reason, an empirical formula is established based on the design of experiments (DOE) for calculating the soft soil’s characteristics. Then a numerical study using PLAXIS 3D is developed for studying the embankment building on soil which is reinforced by CSV. It is found that the efficacy of the reinforcement of the soft soil by CSV with/without PP fibers provides with satisfying results. Moreover, the less amount of soft soil on CSV materials the better for deviatoric stress, axial strain, the effective cohesion, the effective friction angle and modulus of elasticity E50. Additionally, when PP fibers is added to CSV material, experimental results were strongly affected. As far as the numerical study, the embankment building on the soil  that is reinforced by the CSV shows an improvement in the level of displacement in the three directions, the total displacement and security factor. The variation of materials of CSV content with/without PP fibers, a diverse combination with a relatively lower effect can be easily remarked on the achieved results.


2016 ◽  
Vol 53 (10) ◽  
pp. 1583-1599 ◽  
Author(s):  
David Kurz ◽  
Jitendra Sharma ◽  
Marolo Alfaro ◽  
Jim Graham

Clays exhibit creep in compression and shear. In one-dimensional compression, creep is commonly known as “secondary compression” even though it is also a significant component of deformations resulting from shear straining. It reflects viscous behaviour in clays and therefore depends on load duration, stress level, the ratio of shear stress to compression stress, strain rate, and temperature. Research described in the paper partitions strains into elastic (recoverable) and plastic (nonrecoverable) components. The plastic component includes viscous strains defined by a creep rate coefficient ψ that varies with plasticity index and temperature (T), but not with stress level or overconsolidation ratio (OCR). Earlier elastic–viscoplastic (EVP) models have been modified so that ψ = ψ(T) in a new elastic–thermoviscoplastic (ETVP) model. The paper provides a sensitivity analysis of simulated results from undrained (CIŪ) triaxial compression tests for normally consolidated and lightly overconsolidated clays. Axial strain rates range from 0.15%/day to 15%/day, and temperatures from 28 to 100 °C.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1943
Author(s):  
Fu Yi ◽  
Changbo Du

To evaluate the shear properties of geotextile-reinforced tailings, triaxial compression tests were performed on geogrids and geotextiles with zero, one, two, and four reinforced layers. The stress–strain characteristics and reinforcement effects of the reinforced tailings with different layers were analyzed. According to the test results, the geogrid stress–strain curves show hardening characteristics, whereas the geotextile stress–strain curves have strain-softening properties. With more reinforced layers, the hardening or softening characteristics become more prominent. We demonstrate that the stress–strain curves of geogrids and geotextile reinforced tailings under different reinforced layers can be fitted by the Duncan–Zhang model, which indicates that the pseudo-cohesion of shear strength index increases linearly whereas the friction angle remains primarily unchanged with the increase in reinforced layers. In addition, we observed that, although the strength of the reinforced tailings increases substantially, the reinforcement effect is more significant at a low confining pressure than at a high confining pressure. On the contrary, the triaxial specimen strength decreases with the increase in the number of reinforced layers. Our findings can provide valuable input toward the design and application of reinforced engineering.


Geosciences ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 29 ◽  
Author(s):  
Zenon Szypcio

The strength of sand is usually characterized by the maximum value of the secant friction angle. The friction angle is a function of deformation mode, density, and stress level and is strongly correlated with dilatancy at failure. Most often, the friction angle is evaluated from results of conventional compression tests, and correlation between the friction angle of sand at triaxial compression and triaxial extension and plane strain conditions is a vital problem of soil mechanics. These correlations can be obtained from laboratory test results. The failure criteria for sand presented in literature also give the possibility of finding correlations between friction angles for different deformation modes. The general stress-dilatancy relationship obtained from the frictional state concept, with some additional assumptions, gives the possibility of finding theoretical relationships between the friction angle of sand at triaxial compression and triaxial extension and plane strain conditions. The theoretically obtained relationships presented in the paper are fully consistent with theoretical and experimental findings of soil mechanics.


2019 ◽  
Vol 56 (5) ◽  
pp. 649-661 ◽  
Author(s):  
Wengui Cao ◽  
Xin Tan ◽  
Chao Zhang ◽  
Min He

A constitutive model with capacity to simulate the full deformation and failure process for rocks considering initial compression and residual strength behaviors is discussed in this paper. The rock was assumed to consist of the initial voids portion and the solid skeleton portion. The full deformation model of rocks can be established by the consideration of the macroscopic deformation of rocks and the microscopic deformations of the two different portions based on the statistical damage theory. Comparisons between the experimental data from triaxial compression tests and calculated results show that the proposed constitutive model provided a good prediction of the full deformation and failure process, including the effects of initial void compression, stiffness degradation, strain hardening–softening, and residual strength.


2011 ◽  
Vol 382 ◽  
pp. 172-175
Author(s):  
Ren Wei Wu ◽  
Xing Qian Peng ◽  
Li Zhang

As the "Fujian earth-building" have been inscribed by UNESCO in 2008 as World Heritage Site, attentions of protection about the "Fujian earth-building" has getting more and more. This article takes samples of a rammed-earth wall from Yongding earth-buildings and determines the shear strength of the samples with different water content through triaxial compression tests. The influence on shear strength of water content of rammed-earth samples is analyzed. Test results show that the shear strength of rammed-earth has much to do with the water content of the soil, the greater the water content is,the smaller the shear strength is. With water content increasing, cohesion and internal friction angle of rammed-earth were decreases, and its changing trend is of marked characteristic of stage. When water contents of rammed-earth is under some value, its cohesion changes in small ranges; when water contents of rammed-earth is over the value, its cohesion decreases with water content increasing.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiangfeng Lv ◽  
Hongyuan Zhou

The present paper is devoted to investigate the effects of waste polyester fiber fabric blocks on the strength and mechanical behavior of cemented sand. In the investigation, samples were prepared at four different percentages of waste polyester fiber fabric block content (0.0%, 0.5%, 1.0%, and 1.5% by weight of soil) and two different aspect ratios (2 : 1 and 3 : 1), and conventional triaxial compression tests were carried out after the curing period. The test results indicated that the addition of fibers increased peak and residual shear strengths of cemented sand and changed its brittle behavior to a more ductile one. As the fabric block content increased, the brittleness index and initial stiffness decreased, and the peak strain and internal friction angle increased. The optimal combination of the content and aspect ratio was determined to be 0.5% and 3 : 1. The integration of the fabric blocks with the cemented sand matrix was analyzed by using the scanning electron microscopy (SEM). It is found that the reinforcement effect is related to the bond strength and friction at the interface. The micromechanical properties of the fiber/matrix interface were influenced by the undulations between the fabric block components. In summary, this study presented a low-cost and environment-friendly method for reinforcing cement-stabilized sand.


Author(s):  
J. J. Murray ◽  
J. D. Frost ◽  
Y. Wang

Laboratory compaction and triaxial compression tests were performed to assess the compaction characteristics and load deformation response of a sandy silt reinforced with randomly oriented recycled carpet fibers. Discrete, randomly distributed fiber inclusions significantly increase the peak shear strength, reduce the postpeak strength loss, increase the axial strain to failure, and, in some cases, change the stress-strain behavior from strain softening to strain hardening for a sandy silt. Fiber inclusions also impede the compaction process, causing a reduction in the maximum dry density of reinforced specimens with increasing fiber content. The strength losses associated with in-service saturation are significantly reduced with fiber reinforcement. It is suggested that large volumes of recycled waste fibers can be used as a value-added product to enhance the shear strength and load deformation response of soils.


Sign in / Sign up

Export Citation Format

Share Document