Fabrication of Micro Cylindrical Electrode with Flat End Shape and its Application in Electrochemical Micromachining

2013 ◽  
Vol 364 ◽  
pp. 244-247
Author(s):  
Yong Liu

Electrochemical micromachining (EMM) has become more and more important in micro machining in recent years. Micro electrode as the tool of EMM is an essential cell in the machining process. In this study, micro cylindrical electrode is fabricated by electrochemical etching firstly. Second, the flat end shape forming methods for micro cylindrical electrode is investigated. And then, micro electrodes with flat end shape fabricated above is used in electrochemical micro milling process. Finally, a 3D micro structure with three steps is machined on metallic materials by above micro cylindrical electrode with flat end shape.

2020 ◽  
Vol 4 (1) ◽  
pp. 1-7
Author(s):  
Nurul Farhana Mohadzir ◽  
Ainur Munira Rosli ◽  
Ahmad Shahir Jamaludin ◽  
Mohd Nizar Md Razali

High-precision miniaturized components for micro-machining operations has an increasingly demand for numerous developing sectors such as medical instrumentations, electronics components, computer manufacturing, aerospace and automotive engineering. Micro-milling has known as a flexible micro machining process and the most familiar micro mechanical machining method. Due to overcome a few difficulties in micro fabrication, micro milling is picked as an alternative way as it has potential and imperative for high accuracy machining. However, micro tools have low tool life as it is unpredictably and wear quickly. Furthermore, it also has tendency to break easily due to its micro size dimension. The study observe the behaviour of micro milling worn geometry during machining and includes a non-conventional method to measure surface roughness resulted by micro milling process in machining of mild steel AISI1045. The workpiece is prepared by using CNC milling machine with facing and slotting process. Then, the mild steel AISI1045 will undergo a machining process by a 1 mm size end mill diameter with different set of parameters which are spindle speed, feed rate, radial depth and axial depth. Lastly, for the results, the surface roughness of the machined surface will be observed and the condition of tool and the measurement of wear for the tool will be investigated.


Author(s):  
Qiang Guo ◽  
Yan Jiang ◽  
Zhibo Yang ◽  
Fei Yan

As a key factor, the accuracy of the instantaneous undeformed thickness model determines the force-predicting precision and further affects workpiece machining precision in the micro-milling process. The runout with five parameters affects the machining process more significantly compared with macro-milling. Furthermore, modern industry uses cutters with non-uniform pitch and helix angles more and more common for their excellent properties. In this article, an instantaneous undeformed thickness model is presented regarding cutter runout, variable pitch, and helix angles in the micro-milling process. The cutter edge with the cutter runout effect is modeled. Then, the intersecting ellipse between the plane vertical to the spindle axis and the cutter surface which is a cylinder can be gained. Based on this, the points, which are used to remove the material, on the ellipse as well as cutter edges are calculated. The true trochoid trajectory for each cutting point along the tool path is built. Finally, the instantaneous undeformed thickness values are computed using a numerical algorithm. In addition, this article analyzes runout parameters’ effects on the instantaneous undeformed thickness values. After that, helix and pitch angles’ effects on the instantaneous undeformed thickness are studied. Ultimately, the last section verifies the correctness and validity of the instantaneous undeformed thickness model based on the experiment conducted in the literature.


2011 ◽  
Vol 403-408 ◽  
pp. 738-742 ◽  
Author(s):  
Chang Jian Lu ◽  
An Gu ◽  
Li Meng ◽  
Sheng Yi Yang

The principles of ECDM and micro-milling were described in the article. The ECDM technology and micro-milling technology were combined, and a milling platform was designed, through the analysis of the affecting factors in the processing, the Pyrex glass was machined by using the electrochemical discharge micro-milling machining and the experiment results were discussed. The results showed that the electrochemical discharge milling machining had a good prospect for the micro machining of the non-conductive materials.


Author(s):  
Xinyu Liu ◽  
Weihang Zhu ◽  
Victor Zaloom

This paper presents a multi-objective optimization study for the micro-milling process with adaptive data modeling based on the process simulation. A micro-milling machining process model was developed and verified through our previous study. Based on the model, a set of simulation data was generated from a factorial design. The data was converted into a surrogate model with adaptive data modeling method. The model has three input variables: axial depth of cut, feed rate and spindle speed. It has two conflictive objectives: minimization of surface location error (which affects surface accuracy) and minimization of total tooling cost. The surrogate model is used in a multi-objective optimization study to obtain the Pareto optimal sets of machining parameters. The visual display of the non-dominated solution frontier allows an engineer to select a preferred machining parameter in order to get a lowest cost solution given the requirement from tolerance and accuracy. The contribution of this study is to provide a streamlined methodology to identify the preferred best machining parameters for micro-milling.


2021 ◽  
Author(s):  
Naser Haghbin

Abrasive water jet technology can be used for micro-milling using recently developed miniaturized nozzles. This thesis develops methodologies to predict the shape of micro-channels milled using high pressure abrasive water jets, and presents a new high pressure abrasive slurry jet micro-machining process. Since abrasive water jet (AWJ) machining is often used with both the nozzle tip and workpiece submerged in water to reduce noise and contain debris, the performance of submerged and unsubmerged abrasive water jet micro-milling of channels in 316L stainless steel and 6061-T6 aluminum at various nozzle angles and standoff distances were compared. It was found that the centerline erosion rate decreased with channel depth due to the spreading of the jet as the effective standoff distance increased, and because of the growing effect of the stagnation zone as the channel became deeper. The erosive jet spread over a larger effective footprint in air than in water, since particles on the jet periphery were slowed much more quickly in water due to increased drag. As a result, the width of a channel machined in air was wider than that in water. It was also found that the erosive efficacy distribution changed suddenly after the initial formation of the channel. Then, a new surface evolution model was developed that predicts the size and shape of relatively deep micro-channels up to aspect ratios of 3 resulting from unsubmerged and iv submerged abrasive water jet micro-machining (AWJM) using a novel approach in which two different erosive efficacy expressions were sequentially applied. Since the channels produced by AWJM were found to be relatively wavy due to fluctuations in abrasive mass flow rate, a novel high pressure (water pump pressure up to 345 MPa) abrasive jet slurry micro-machining (HASJM) system was introduced by feeding a premixed slurry into the mixing chamber of a water jet machine with a micro-nozzle. Moreover, an existing model developed for AWJM abrasive particle velocities was modified and used to predict the particle velocity in HASJM, and then verified using a double disc apparatus (DDA). The HASJM system was then used to study the effect of entrained air in abrasive water jet micro-machining (AWJM) by performing experiments at the same particle velocity and dose for the two systems. The centerline waviness, Wa, of micro-channels made in SS316L and Al60661-T6 using HASJM were typically 3.4 times lower than those made with AWJM using the same dose of particles due to the more constant abrasive flow rate provided by the HASJM provided. The centerline roughness, Ra was approximately the same in both processes at a traverse velocity of Vt=4572 mm/min and a nozzle angle of 90°. For micro-channels of a given depth, the widths of those made with HASJM were 25.6 % narrower than those produced with AWJM, mainly due to the wider jet that resulted from the entrained air in AWJM.


2021 ◽  
Author(s):  
Naser Haghbin

Abrasive water jet technology can be used for micro-milling using recently developed miniaturized nozzles. This thesis develops methodologies to predict the shape of micro-channels milled using high pressure abrasive water jets, and presents a new high pressure abrasive slurry jet micro-machining process. Since abrasive water jet (AWJ) machining is often used with both the nozzle tip and workpiece submerged in water to reduce noise and contain debris, the performance of submerged and unsubmerged abrasive water jet micro-milling of channels in 316L stainless steel and 6061-T6 aluminum at various nozzle angles and standoff distances were compared. It was found that the centerline erosion rate decreased with channel depth due to the spreading of the jet as the effective standoff distance increased, and because of the growing effect of the stagnation zone as the channel became deeper. The erosive jet spread over a larger effective footprint in air than in water, since particles on the jet periphery were slowed much more quickly in water due to increased drag. As a result, the width of a channel machined in air was wider than that in water. It was also found that the erosive efficacy distribution changed suddenly after the initial formation of the channel. Then, a new surface evolution model was developed that predicts the size and shape of relatively deep micro-channels up to aspect ratios of 3 resulting from unsubmerged and iv submerged abrasive water jet micro-machining (AWJM) using a novel approach in which two different erosive efficacy expressions were sequentially applied. Since the channels produced by AWJM were found to be relatively wavy due to fluctuations in abrasive mass flow rate, a novel high pressure (water pump pressure up to 345 MPa) abrasive jet slurry micro-machining (HASJM) system was introduced by feeding a premixed slurry into the mixing chamber of a water jet machine with a micro-nozzle. Moreover, an existing model developed for AWJM abrasive particle velocities was modified and used to predict the particle velocity in HASJM, and then verified using a double disc apparatus (DDA). The HASJM system was then used to study the effect of entrained air in abrasive water jet micro-machining (AWJM) by performing experiments at the same particle velocity and dose for the two systems. The centerline waviness, Wa, of micro-channels made in SS316L and Al60661-T6 using HASJM were typically 3.4 times lower than those made with AWJM using the same dose of particles due to the more constant abrasive flow rate provided by the HASJM provided. The centerline roughness, Ra was approximately the same in both processes at a traverse velocity of Vt=4572 mm/min and a nozzle angle of 90°. For micro-channels of a given depth, the widths of those made with HASJM were 25.6 % narrower than those produced with AWJM, mainly due to the wider jet that resulted from the entrained air in AWJM.


Author(s):  
Padmaja Tripathy ◽  
Kalipada Maity

This paper presents a modeling and simulation of micro-milling process with finite element modeling (FEM) analysis to predict cutting forces. The micro-milling of Inconel 718 is conducted using high-speed steel (HSS) micro-end mill cutter of 1mm diameter. The machining parameters considered for simulation are feed rate, cutting speed and depth of cut which are varied at three levels. The FEM analysis of machining process is divided into three parts, i.e., pre-processer, simulation and post-processor. In pre-processor, the input data are provided for simulation. The machining process is further simulated with the pre-processor data. For data extraction and viewing the simulated results, post-processor is used. A set of experiments are conducted for validation of simulated process. The simulated and experimental results are compared and the results are found to be having a good agreement.


2011 ◽  
Vol 2-3 ◽  
pp. 797-800
Author(s):  
Jun Cheng ◽  
Ya Dong Gong ◽  
Yue Ming Liu ◽  
Jian Yu Yang

This paper presents a novel micro machining process that micro mill-grinding by combining micro-grinding and micro-milling. The principle of micro mill-grinding has been analyzed and a experiment is designed to study the influences in micro mill-grinding process on Al 6061-T6. The manufacturing is carried out on a desktop micro machine developed by NEU. In this research, analysis from results could found that the surface quality influences in micro mill-grinding is complicated affected both by milling and grinding, and conclude aspects such as cutter diameter, feed rate and material properties.


2012 ◽  
Vol 713 ◽  
pp. 67-72
Author(s):  
Daniel Teixidor ◽  
I. Ferrer ◽  
Joaquim de Ciurana

This paper reports the characterization of laser machining (milling) process to manufacture micro-channels in order to understand the incidence of process parameters on the final features. Selection of process operational parameters is highly critical for successful laser micromachining. A set of designed experiments is carried out in a pulsed Nd:YAG laser system using AISI H13 hardened tool steel as work material. Several micro-channels have been manufactured as micro-mold cavities varying different process parameter. Results are obtained by evaluating the dimensions and the surface finish of the micro-channel. The dimensions and shape of the micro-channels produced with laser-micro-milling process exhibit variations. In general the use of low scanning speeds increases the quality of the feature in both surface finishing and dimensional.


2020 ◽  
Vol 846 ◽  
pp. 99-104
Author(s):  
Gandjar Kiswanto ◽  
Maulana Azmi ◽  
Adrian Mandala ◽  
Dede Lia Zariatin ◽  
Tae Jo Ko

The development of micro-products in industry, like aviation, medical equipment, electronics, etc, has been increasing lately. The need for scaling down of product has been increasing to make the product simpler and complex. Micro-milling has capabilities in producing complex parts. In this study, mapping and comparing the result of the machining process of Inconel 718 and Aluminum Alloy 1100 was employed. In this experiment, Inconel 718 was used as workpiece material and the result of Aluminum Alloy taken from recent studies. Then, A cutting tool with a diameter 1 mm carbide coating TiAlN was used in this experiment. The machining process was performed with three varieties of spindle speed and feed rate with a constant depth of cut. After the machining is done, the mapping of the result surface roughness of Inconel 718 and AA1100 performed. It was found that Inconel 718 has poor machinability compared with AA 1100. Inconel 718 also has a high manufacturing cost compared to AA 1100 because the cutting tool was easy to wear.


Sign in / Sign up

Export Citation Format

Share Document