Mathematical Modeling of Growth Conditions and Interpretation of Phase Diagram for InxGa1-xN Epitaxial Layer

2013 ◽  
Vol 372 ◽  
pp. 70-74 ◽  
Author(s):  
Md. Soyaeb Hasan ◽  
Apurba Kumar Saha ◽  
Md. Rafiqul Islam ◽  
Nowshad Amin

It is imperative to determine the dependence of the quality and characteristics of the epitaxial film on different growth parameters. A mathematical model has been developed showing the effect of different growth parameters e.g. temperature, TMI and TEG flow rate, molar ratio on epitaxial film. This model is considered for InGaN film on GaN template with an Indium mole fraction up to 0.4 by Metal Organic Vapor Phase Epitaxy (MOVPE). The results obtained from this model has been compared and fitted with experimentally obtained data through XRD, RSM, PL, SEM etc. Finally, a phase diagram has been proposed to interpret the phase separation and Indium content evolution under the influence of growth temperature and precursor gas flow.

2007 ◽  
Vol 2007 ◽  
pp. 1-6 ◽  
Author(s):  
A. Gröning ◽  
V. Pérez-Solórzano ◽  
M. Jetter ◽  
H. Schweizer

The optical properties of metal-organic vapor phase epitaxy grown AlyInxGa1−x−yN quantum dot structures have been studied by time-resolved photoluminescence experiments. We investigated the recombination dynamics of the photo-exited carriers in dependence of the growth parameters such as aluminium flow and the duration of the growth interruption after the dot deposition. Our results confirm the presence of localized states, where the degree of localization is strongly dependent on the growth conditions. To describe this behavior, we propose a band structure with coupled potentials for these nanostructures. Finally, we demonstrate state filling to prove the zero-dimensional character of the strongly localized states in our quaternary quantum dots.


2005 ◽  
Vol 892 ◽  
Author(s):  
William E. Fenwick ◽  
Vincent T. Woods ◽  
Ming Pan ◽  
Nola Li ◽  
Matthew H. Kane ◽  
...  

AbstractThin films of ZnO were grown by metal organic chemical vapor deposition (MOCVD) in a vertical injection rotating disk reactor (RDR) system on sapphire substrates. Kinetics of ZnO growth by MOCVD were studied and an optimal growth window for a RDR tool was determined. Experimental growth conditions were chosen based on calculations of Reynolds Number (Re) and mixed convection parameter in order to select a growth window with stable gas flow and uniform heat transfer. Growth parameters were systemically varied within this window to determine the optimal growth conditions for this MOCVD tool and to study how these parameters affect film growth and quality. Properties of ZnNiO films grown by MOCVD were also studied to determine the effects of Ni incorporation on structural, optical, and magnetic properties.


1993 ◽  
Vol 46 (3) ◽  
pp. 435
Author(s):  
C Jagadish ◽  
A Clark ◽  
G Li ◽  
CA Larson ◽  
N Hauser ◽  
...  

Undoped and doped layers of gallium arsenide and aluminium gallium arsenide have been grown on gallium arsenide by low-pressure metal organic vapour-phase epitaxy (MOVPE). Delta doping and growth on silicon substrates have also been attempted. Of particular interest in the present study has been the influence of growth parameters, such as growth temperature, group III mole fraction and dopant flow, on the electrical and physical properties of gallium arsenide layers. An increase in growth temperature leads to increased doping efficiency in the case of silicon, whereas the opposite is true in the case of zinc. Deep level transient spectroscopy (DTLS) studies on undoped GaAs layers showed two levels, the expected EL2 level and a carbon-related level. The determination of optimum growth conditions has allowed good quality GaAs and AlGaAs epitaxial layers to be produced for a range of applications.`


2020 ◽  
Vol 90 (2) ◽  
pp. 20301
Author(s):  
Ilkay Demir ◽  
Ahmet Emre Kasapoğlu ◽  
Hasan Feyzi Budak ◽  
Emre Gür ◽  
Sezai Elagoz

We investigate influence of GaAs buffer layer (BL) growth parameters such as temperature and thickness on the structural, morphological, crystalline and optical quality of metal organic vapor phase epitaxy (MOVPE) grown heterostructures of GaAs on Ge. It was found that the optimal BL conditions significantly decrease the effects of anti-phase boundaries (APBs) even when grown on offcut Ge substrate by two-step growth technique with AsH3 pre-flow to promote double atomic step formation. It is observed that as the growth temperature increases, the growth rate of the GaAs BL increases, too. Improvement on the structural quality is observed up to BLs temperature of 535 °C, then it decreases. On the other hand, as the different thick BLs, 12, 25, 75 nm are considered, the epilayer grown on the 25 nm thick BL has shown the lowest full width at half maximum (FWHM) value, large photoluminescence peak intensity and internal quantum efficiency (IQE).


2011 ◽  
Vol 308-310 ◽  
pp. 1037-1040
Author(s):  
Liao Qiao Yang ◽  
Jian Zheng Hu ◽  
Zun Miao Chen ◽  
Jian Hua Zhang ◽  
Alan G. Li

In this paper, a novel super large metal organic chemical vapor deposition (MOCVD) reactor with three inlets located on the periphery of reactor was proposed and numerical evaluation of growth conditions for GaN thin film was characterized. In this design, the converging effects of gas flow in the radial direction could counterbalance the dissipation of metal organics source. CFD was used for the mathematical solution of the fluid flow, temperature and concentration fields. A 2-D model utilizing axisymmetric mode to simulate the gas flow in a MOCVD has been developed. The growth of GaN films using TMGa as a precursor, hydrogen as carrier gas was investigated. The effects of flow rates, mass fraction of various species, operating pressure, and gravity were analyzed and discussed, respectively. The numerical simulation results show all the fields distributions were in an acceptable range.


2007 ◽  
Vol 91 (8) ◽  
pp. 081117 ◽  
Author(s):  
D. Franke ◽  
M. Moehrle ◽  
J. Boettcher ◽  
P. Harde ◽  
A. Sigmund ◽  
...  

2010 ◽  
Vol 49 (12) ◽  
pp. 125601 ◽  
Author(s):  
Yoshiyuki Kondo ◽  
Momoko Deura ◽  
Mitsuru Takenaka ◽  
Shinichi Takagi ◽  
Yoshiaki Nakano ◽  
...  

1998 ◽  
Vol 537 ◽  
Author(s):  
Ling Zhang ◽  
Rong Zhang ◽  
Marek P. Boleslawski ◽  
T.F. Kuech

AbstractMetal organic vapor phase epitaxy (MOVPE) of GaN has been carried out using diethyl gallium chloride (DEGaCI) and ammonia. The growth rate and efficiency of the DEGaCl-based growth decreases with increasing temperature when compared to trimethyl gallium (TMG)-based growth under similar conditions. Both low temperature buffer and the high temperature GaN layers were grown using the DEGaCI-NH3 precursor combination on the basal plane of sapphire and compared to similar structures grown using TMG and NH3. DEGaCl-based growth reveals an improved growth behavior under identical growth conditions to the conventional TMGa and ammonia growth. X-ray, Hall, and atomic force microscopy (AFM) measurements have been carried out on these samples providing a direct comparison of materials properties associated with these growth precursors. For the DEGaCl-based growth, the x-ray rocking curve line width, using the (0002) reflection, is as low as 300 arcsec on a 2.5-micron thick film. A RMS surface roughness of ∼0.5nm measured over a 10x10 micron area.


Sign in / Sign up

Export Citation Format

Share Document