Effects of Fly Ash/Slag Ratio and Liquid/Binder Ratio on Strength of Alkali-Activated Fly Ash/Slag Mortars

2013 ◽  
Vol 377 ◽  
pp. 50-54 ◽  
Author(s):  
Mao Chieh Chi ◽  
Yen Chun Liu

The purpose of this study is to investigate the effects of fly ash/slag ratio and liquid/binder ratio on strength of alkali-activated fly ash/slag (AAFS) mortars. Three liquid/binder ratios of 0.35, 0.5 and 0.65 and three fly ash/slag ratios of 100/0, 50/50, and 0/100 were selected as variables to design and produce mixes of AAFS mortars. The compressive strength and flexural strength of alkali-activated fly ash/slag mortars were discussed and compared with reference mortars produced using ordinary Portland cement (OPC) mortars. Based on the results, both fly ash/slag ratio and the liquid/binder ratio are significant factors influencing the strengths of AAFS mortars. The strength of AAFS mortars except alkali-activated fly ash mortars is higher than that of OPC mortars. When the fly ash/slag ratio reaches 50/50, the AAFS mortars possesses the highest strength compared with the other mortars.

Activated Slag (AAS) and Fly Ash (FA) based geopolymer concrete a new blended alkali-activated concrete that has been progressively studied over the past years because of its environmental benefits superior engineering properties. Geopolymer has many favorable characteristics in comparison to Ordinary Portland Cement. Many base materials could be utilized to make geopolymer with the convenient concentration of activator solution. In this study, the experimental program composed of two phases; phase on divided into four groups; Group one deliberated the effect of sodium hydroxide molarity and different curing condition on compressive strength. Group two studied the effect of alkali activated solution (NaOH and Na2SiO3) content on compressive strength and workability. The effect of sand replacement with slag on compressive strength and workability was explained in group three. Group four studied the effect of slag replacement with several base materials Fly Ash (FA), Ordinary Portland Cement (OPC), pulverized Red Brick (PRB), and Meta Kaolin (MK). Phase two contains three mixtures from phase one which had the highest compressive strength. For each mixture, the fresh concrete test was air content. In addition the hardened concrete tests were the compressive strength at 3, 7, 28, 90, 180, and 365 days, the flexural strength at 28, 90, and 365 days, and the young's modulus at 28, 90, and 365 days. Moreover; the three mixtures were exposed to elevated temperature at 100oC, 300oC, and 600oC to study the effect of elevated temperature on compressive and flexural strength.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7572
Author(s):  
William Valencia-Saavedra ◽  
Rafael Robayo-Salazar ◽  
Ruby Mejía de Gutiérrez

This article demonstrates the possibility of producing alkali-activated hybrid cements based on fly ash (FA), and construction and demolition wastes (concrete waste, COW; ceramic waste, CEW; and masonry waste, MAW) using sodium sulfate (Na2SO4) (2–6%) and sodium carbonate (Na2CO3) (5–10%) as activators. From a mixture of COW, CEW, and MAW in equal proportions (33.33%), a new precursor called CDW was generated. The precursors were mixed with ordinary Portland cement (OPC) (10–30%). Curing of the materials was performed at room temperature (25 °C). The hybrid cements activated with Na2SO4 reached compressive strengths of up to 31 MPa at 28 days of curing, and the hybrid cements activated with Na2CO3 yielded compressive strengths of up to 22 MPa. Based on their mechanical performance, the optimal mixtures were selected: FA/30OPC-4%Na2SO4, CDW/30OPC-4%Na2SO4, FA/30OPC-10%Na2CO3, and CDW/30OPC-10%Na2CO3. At prolonged ages (180 days), these mixtures reached compressive strength values similar to those reported for pastes based on 100% OPC. A notable advantage is the reduction of the heat of the reaction, which can be reduced by up to 10 times relative to that reported for the hydration of Portland cement. These results show the feasibility of manufacturing alkaline-activated hybrid cements using alternative activators with a lower environmental impact.


Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 40 ◽  
Author(s):  
Vytautas Bocullo ◽  
Danutė Vaičiukynienė ◽  
Ramūnas Gečys ◽  
Mindaugas Daukšys

This research presents the influence of ordinary Portland cement (OPC) and/or water glass addition on fly ash alkali-activated mortar and concrete. The results show that fly ash (FA) concrete activated with a NaOH solution and water glass mixture had better resistance to freeze and thaw, carbonation, alkali-silica reaction (ASR) and developed higher compressive strength and static elastic modulus compared with the FA concrete activated only with an NaOH solution. The addition of OPC contributes to the development of a denser microstructure of alkali activated concrete (AAC) samples. In the presence of water glass and OPC, the compressive strength (52.60 MPa) of the samples increased more than two times as compared with the reference sample (21.36 MPa) without OPC and water glass. The combination of OPC and water glass showed the increased strength and enhanced durability of AAC. The samples were more resistant to freeze and thaw, ASR, and carbonation.


2016 ◽  
Vol 865 ◽  
pp. 67-71 ◽  
Author(s):  
Olesia Mikhailova ◽  
Pavel Rovnaník

Geopolymers are presented in many studies as binders alternative to ordinary Portland cement. Several inorganic materials have been used as raw materials for the production of geopolymers. One of them is metakaolin which is produced by dehydroxylation of kaolin. Metakaolin has a much larger surface area than cement, resulting in an increase in water demand to maintain workability. Polymer admixtures may contribute to reduction of this demand. However, another problem should be considered: plasticizers which improve rheological properties in cement technology are not effective for geopolymers. The aim of this study was to analyze the effect of different polymer admixtures on the compressive and flexural strength, pore size distribution and microstructure of alkali-activated metakaolin material. The results revealed that a maximum compressive strength of 18.6 MPa was achieved by adding 1.5% of VINNAPAS 7016 F, and a maximum flexural strength of 2.2 MPa when adding 0.5 or 1% of the same polymer admixture.


2012 ◽  
Vol 476-478 ◽  
pp. 1585-1588
Author(s):  
Hong Pan ◽  
Guo Zhong Li

The comprehensively modified effect of cement, VAE emulsion and self-made acrylic varnish on mechanical and water-resistant properties of gypsum sample was investigated and microstructure of gypsum sample was analyzed. Experimental results exhibit that absolutely dry flexural strength, absolutely dry compressive strength, water absorption and softening coefficient of gypsum specimen with admixture of 10% ordinary Portland cement and 6% VAE emulsion and acrylic varnish coated on its surface can respectively reach to 5.11MPa , 10.49 MPa, 8.32% and 0.63, respectively.


Author(s):  
Kotaro Kawamura ◽  
Joe Takemura ◽  
Shigenobu Iguchi ◽  
Tsutomu Yoshida ◽  
Masashi Kobayashi

<p>We are carrying out a construction project of new railroad viaducts. These new railroad viaducts are constructing using about 110,000 m<span>3</span> volume concrete. In this construction place, it is difficult for us to get low ASR-reactive aggregates and it is expected to be supplied with snowmelt water on the viaducts in winter. Then we tested ASR-reactive these local aggregates and found an effective mixed ratio of fly-ash is 20% of cement. On the other hand, various side effects were also expected by using fly-ash. For example, initial cracking due to contraction, early strength concrete, bleeding, etc. Therefore, we repeated various tests and examined and carried out a method that could ensure the same construction method and quality as when using ordinary Portland cement, even with fly-ash. Also, we adopted a structure that is unlikely to be affected by rainwater as a structural measure. For example, the entire adoption of a ramen type viaduct that has eliminated bearings, adoption of FRP sound barrier, etc. Then we made it possible to build highly durable railway viaducts by these various measures of materials and structures.</p>


2018 ◽  
Vol 761 ◽  
pp. 120-123 ◽  
Author(s):  
Vlastimil Bílek ◽  
David Pytlík ◽  
Marketa Bambuchova

Use a ternary binder for production of a high performance concrete with a compressive strengths between 120 and 170 MPa is presented. The water to binder ratio of the concrete is 0.225 and the binder is composed of Ordinary Portland Cement (OPC), condensed silica fume (CSF), ground limestone (L), fly ash (FA) and metakaoline (MK). The dosage of (M + CSF) is kept at a constant level for a better workability of fresh concrete. Different workability, flexural and compressive strengths were obtained for concretes with a constant cement and a metakaoline dosage, and for a constant dosage (FA + L) but a different ratio FA / L. An optimum composition was found and concretes for other tests were designed using this composition.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1707 ◽  
Author(s):  
Yu-You Wu ◽  
Longxin Que ◽  
Zhaoyang Cui ◽  
Paul Lambert

Concrete made from ordinary Portland cement is one of the most widely used construction materials due to its excellent compressive strength. However, concrete lacks ductility resulting in low tensile strength and flexural strength, and poor resistance to crack formation. Studies have demonstrated that the addition of graphene oxide (GO) nanosheet can effectively enhance the compressive and flexural properties of ordinary Portland cement paste, confirming GO nanosheet as an excellent candidate for using as nano-reinforcement in cement-based composites. To date, the majority of studies have focused on cement pastes and mortars. Only limited investigations into concretes incorporating GO nanosheets have been reported. This paper presents an experimental investigation on the slump and physical properties of concrete reinforced with GO nanosheets at additions from 0.00% to 0.08% by weight of cement and a water–cement ratio of 0.5. The study demonstrates that the addition of GO nanosheets improves the compressive strength, flexural strength, and split tensile strength of concrete, whereas the slump of concrete decreases with increasing GO nanosheet content. The results also demonstrate that 0.03% by weight of cement is the optimum value of GO nanosheet dosage for improving the split tensile strength of concrete.


2019 ◽  
Vol 803 ◽  
pp. 262-266
Author(s):  
Osama Ahmed Mohamed ◽  
Maadoum M. Mustafa

Alkali activated slag (AAS) offers opportunities to the construction industry as an alternative to ordinary Portland cement (OPC). The production of OPC and its use contributes significantly to release of CO2 into the atmosphere while AAS is an industrial by-product that contributes much less to the environmental footprint that needs to be recycled if not landfilled. This paper outlines some of the key properties, merits and demerits of AAS when used as alternative to OPC. Competitive compressive strength of AAS concrete is amongst of the advantages of replacing cement with AAS while high shrinkage and carbonation levels are potential disadvantages.


Sign in / Sign up

Export Citation Format

Share Document