Numerical Simulation and Experiment Research on Surface Defects for Thick Plate Multi-Point Forming Process

2013 ◽  
Vol 385-386 ◽  
pp. 59-62
Author(s):  
Le Li ◽  
Li Yong Wang

Multi-point forming (MPF) is an advanced flexible manufacturing technology for three-dimensional sheet metal forming. The substance of MPF is replacing the conventional solid dies by a set of discrete punches called punch group. Due to the discrete contacts between the workpiece and punches, the dimple defects occurred, which are inevitable and particular for MPF. In this study, the analysis of the deformation features of the dimple defects was implemented. The dynamic explicit finite element method was chosen to implement the simulation of MPF process. The influencing factors of the surface defects were researched. The relevant experiment was implemented, and it verified that the forming defects decreased with the increasing of the thickness of metal plate and the objective surface curvature radius.

2011 ◽  
Vol 704-705 ◽  
pp. 102-108 ◽  
Author(s):  
Li Yong Wang ◽  
Le Li

Multi-point forming (MPF) is an advanced flexible manufacturing technology for three-dimensional sheet metal forming. The substance of MPF is replacing the conventional solid dies by a set of discrete punches called ‘‘punch group’’. Because the reconfigurable discrete punches are used, part manufacturing costs are reduced and manufacturing time is shortened. However due to the discrete contacts between the workpiece and punches, the dimple defects occurred, which are inevitable and particular for MPF. For thick plate, the surface defect is the mainly dimple defect during its MPF process. In this study, elastic cushion was proposed to prevent these surface defects. The dynamic explicit finite element method was chosen to implement the simulation of MPF process. The Hill’s anisotropic yield criterion was used to describe the workpiece material behavior, and the elastic cushion was described with using the hyperelastic material model. The method to determine each punch position to construct forming surface was introduced. The MPF process with and without using elastic cushion was simulated to study the effect of the elastic cushion on preventing the surface defects. The relevant experiment was implemented, and it verified that the elastic cushion is effective method to suppress the surface defects during the thick plate MPF process. Keyword: flexible forming process (FFP), elastic cushion, surface defects, multi-point forming (MPF), thick plate, numerical simulation


2013 ◽  
Vol 423-426 ◽  
pp. 737-740
Author(s):  
Zhong Yi Cai ◽  
Mi Wang ◽  
Chao Jie Che

A new stretch-forming process based on discretely loading for three-dimensional sheet metal part is proposed and numerically investigated. The gripping jaw in traditional stretch-forming process is replaced by the discrete array of loading units, and the stretching load is applied at discrete points on the two ends of sheet metal. By controlling the loading trajectory at the each discrete point, an optimal stretch-forming process can be realized. The numerical results on the new stretch-forming process of a saddle-shaped sheet metal part show that the distribution of the deformation on the formed surface of new process is more uniform than that of traditional stretch-forming, and the forming defects can be avoided and better forming quality will be obtained.


2011 ◽  
Vol 130-134 ◽  
pp. 2240-2244
Author(s):  
Jing Ling Wang ◽  
Zhong Yr Cai ◽  
Mine Zhe Li ◽  
Hui Yang

Multi-point stretch forming is a flexible manufacturing technique for three-dimensional shape forming of craft skin. Its die surface is constructed by many pairs of matrices of elements whose height is controlled by computer. It uses the curved surface of elements instead of the die surface. The element numberis an important parameter because it has great influence on the part quality. This paper simulates the forming process of paraboloid part and saddle-shaped part with different number of elements and studies the influence of element number on the shape accuracy of the part .That will provides guidance for the application of multi-point stretch forming.


Author(s):  
Shuwen Wen ◽  
Jun Li ◽  
Zhuozhi Fan ◽  
Shu Yan Zhang ◽  
Peng Zhang ◽  
...  

Abstract Three dimensional (3D) FE models have been developed for simulation of the incremental forming processes employed in UOE linepipe manufacturing at Tata Steel Hartlepool 42” Pipe Mill, namely edge crimping (C-press) and pipe expansion (expander). Transitional zone behaviour resulted from both forming operations as previously identified in practice has been revealed, for the first time, by the 3D FE simulations and preliminarily analysed. It was demonstrated that the transitional zone features observed in both edge crimping and pipe expansion were initiated in the plate/pipe feed-in side/area of the dies, and then formed within the working length/face of the forming dies. Detailed examination and analysis of the FE results, in terms of plastic strain and residual stress patterns as well as contact pressure distributions, have shown that the initiation of the transitional zone features was due to the redundant plastic deformation caused by (cantilever) bending in the material feed-in area of the dies mainly along the longitudinal direction. It is therefore believed that minimisation/elimination of such redundant plastic bending effect in the longitudinal direction would lead to minimisation/elimination of the unfavourable deformation features in the so-called transitional zones, which could be achieved through improved die designs and possibly forming process parameter settings.


2005 ◽  
Vol 127 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Hansun Ryou ◽  
Kwansoo Chung ◽  
Jeong-Whan Yoon ◽  
Chung-Souk Han ◽  
Jae Ryoun Youn ◽  
...  

In order to achieve reliable but cost-effective crash simulations of stamped parts, sheet-forming process effects were incorporated in simulations using the ideal forming theory mixed with the three-dimensional hybrid membrane and shell method, while the subsequent crash simulations were carried out using a dynamic explicit finite element code. Example solutions performed for forming and crash simulations of I- and S-shaped rails verified that the proposed approach is cost effective without sacrificing accuracy. The method required a significantly small amount of additional computation time, less than 3% for the specific examples, to incorporate sheet-forming effects into crash simulations. As for the constitutive equation, the combined isotropic-kinematic hardening law and the nonquadratic anisotropic yield stress potential as well as its conjugate strain-rate potential were used to describe the anisotropy of AA6111-T4 aluminum alloy sheets.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1249
Author(s):  
Jiaxin Gao ◽  
Dongye He ◽  
Lirong Sun ◽  
Xi Zhang ◽  
Zhongyi Cai

Continuous roll forming (CRF) is a new method for the rapid forming of three-dimensional (3D) surfaces developed in recent years, and the significant advantage of CRF compared with traditional die forming is that the longitudinal dimension of the sheet metal is not limited. By controlling the curvature radius and gap shape of upper and lower bending rolls, three-dimensional parts with different shapes and sizes can be precisely formed. When the elastic deformation is ignored during the forming process, the transversal curvature radius of the three-dimensional surface is consistent with the radius of the roll gap centerline. Therefore, the calculation of longitudinal curvature radius is the key to improve the accuracy of the 3D surface in CRF. In this paper, the basic principle of CRF is described. The modified formulas for calculating the longitudinal curvature radius of convex and saddle surfaces based on the quadratic relationship between the strain and coordinates are deduced in detail, and the corresponding design method of the roll gap is derived. Furthermore, the mathematical equations of convex and saddle surfaces are given. Through numerical simulation and theoretical analysis, it is found that the relative errors of the longitudinal centerline radius are reduced from 13.67% before modification to 4.35% after modification for a convex surface and 6.81% to 0.41% for a saddle surface when the transversal curvature radius is 800 mm and the compression ratio is 5%. The experimental and measured results indicate that the shapes of formed parts are more consistent with the target parts after modification, which further proves the applicability of the modified formulas.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rodolfo Panerai ◽  
Antonio Pittelli ◽  
Konstantina Polydorou

Abstract We find a one-dimensional protected subsector of $$ \mathcal{N} $$ N = 4 matter theories on a general class of three-dimensional manifolds. By means of equivariant localization we identify a dual quantum mechanics computing BPS correlators of the original model in three dimensions. Specifically, applying the Atiyah-Bott-Berline-Vergne formula to the original action demonstrates that this localizes on a one-dimensional action with support on the fixed-point submanifold of suitable isometries. We first show that our approach reproduces previous results obtained on S3. Then, we apply it to the novel case of S2× S1 and show that the theory localizes on two noninteracting quantum mechanics with disjoint support. We prove that the BPS operators of such models are naturally associated with a noncom- mutative star product, while their correlation functions are essentially topological. Finally, we couple the three-dimensional theory to general $$ \mathcal{N} $$ N = (2, 2) surface defects and extend the localization computation to capture the full partition function and BPS correlators of the mixed-dimensional system.


2021 ◽  
Vol 11 (5) ◽  
pp. 2142
Author(s):  
Trung-Kien Le ◽  
Tuan-Anh Bui

Motorbike shock absorbers made with a closed die employ a tube-forming process that is more sensitive than that of a solid billet, because the tube is usually too thin-walled to conserve material. During tube forming, defects such as folding and cracking occur due to unstable tube forming and abnormal material flow. It is therefore essential to understand the relationship between the appearance of defects and the number of forming steps to optimize technological parameters. Based on both finite element method (FEM) simulations and microstructural observations, we demonstrate the important role of the number and methodology of the forming steps on the material flow, defects, and metal fiber anisotropy of motorbike shock absorbers formed from a thin-walled tube. We find limits of the thickness and height ratios of the tube that must be held in order to avoid defects. Our study provides an important guide to workpiece and processing design that can improve the forming quality of products using tube forming.


2014 ◽  
Vol 6 ◽  
pp. 131253 ◽  
Author(s):  
Young-Ho Seo ◽  
Ji-Woo Park ◽  
Woo-Jin Song ◽  
Beom-Soo Kang ◽  
Jeong Kim

Springback in metal forming process often results in undesirable shape changes in formed parts and leads to deterioration in product quality. Even though springback can be predicted and compensated for through the theories or methodologies established thus far, an increase in manufacturing cost accompanied by a change in die shape is inevitable. In the present paper, it is suggested that the cost accompanied with springback compensation can be minimized while allowing the processing of various three-dimensional curved surfaces by using a flexible die composed of multiple punches. With the die being very flexible, the iterative trial-and-error method can be readily applied to compensate for the springback. Thus, repeated designing and redesigning of solid or matched dies can be avoided, effectively saving considerable time. Only some adjustments of punch height are required. Detailed designs of the flexible die as well as two core algorithms to control the respective punch heights are described in this paper. In addition, a closed-loop system for the springback compensation using the flexible die is proposed. The amount of springback was simulated by a finite element analysis and the modified displacement adjustment (DA) method as the springback compensation model was used in the closed-loop system. This system was applied to a two-dimensional quadratic shape problem, and its robustness was verified by an experiment.


2011 ◽  
Vol 264-265 ◽  
pp. 24-29 ◽  
Author(s):  
Seyed Mohammad Ebrahimi ◽  
Seyed Ali Asghar Akbari Mousavi ◽  
Mostafa Soltan Bayazidi ◽  
Mohammad Mastoori

Flow forming is one of the cold forming process which is used for hollow symmetrical shapes. In this paper, the forward flow forming process is simulated using the finite element method and its results are compared with the experimental process. The variation of thickness of the sample is examined by the ultrasonic tests for the five locations of the tubes. To simulate the process, the ABAQUS explicit is used. The effects of flow forming variables such as the angle of rollers and rate of feeding of rollers, on the external variables such as internal diameter, thickness of tube and roller forces are considered. The study showed that the roller force and surface defects were reduced with low feeding rate and low rollers attack angles. Moreover, the sample internal diameter increased at low feeding rate and low rollers attack angles. The optimum variables for flow forming process were also obtained.


Sign in / Sign up

Export Citation Format

Share Document