The Method for Numerical Simulation of the Impact on the Infrared Radiation Seeker from the Warhead Shock Layer

2013 ◽  
Vol 390 ◽  
pp. 464-467
Author(s):  
Da Lei Luo ◽  
Jun Liu ◽  
Yuan Wang ◽  
Deng Feng Fan

It counts the impact on the infrared radiation seeker which in the head of the hypersonic missile. Firstly, it built the calculated model based on the shape of a missile, and compartmentalized the aerodynamics flow field grid , the infrared radiation seeker main mirror grid , the radiation field grid, and had the relation of the grids unambiguous, and got the communication of the aerodynamics flow field. Then it educed irradiance formula about the shock layer aerodynamic flow fled radiation affect to the infrared radiation seeker main mirror. The result is the infrared radiation wave band 3~5 to the main mirror, from the shock layer aerodynamic flow fled is about 120 W/m2. The distributing law of the impact is annular circumfused the center of the main mirror, the infrared radiation is the highest in the center of the main mirror, decreased by the radius of the main mirror.

Author(s):  
Lifu Wang ◽  
Dongyan Shi ◽  
Zhixun Yang ◽  
Guangliang Li ◽  
Chunlong Ma ◽  
...  

Abstract To further investigate and improve the cleaning ability of the cavitation nozzle, this paper proposes a new model that is based on the Helmholtz nozzle and with the quadratic equation curve as the outer contour of the cavitation chamber. First, the numerical simulation of the flow field in the nozzle chamber was conducted using FLUENT software to analyze and compare the impact of the curve parameters and Reynolds number on the cleaning effect. Next, the flow field was captured by a high-speed camera in order to study the cavitation cycle and evolution process. Then, experiments were performed to compare the cleaning effect of the new nozzle with that of the Helmholtz nozzle. The study results demonstrate that effective cavitation does not occur when the diameter of the cavitation chamber is too large. For the new nozzle, with the increase of the Reynolds number, the degree of cavitation in the chamber first increases and then decreases; the cleaning effect is much better than that of a traditional Helmholtz nozzle under the same conditions; the nozzle has the best cleaning effect for the stand-off distance of 300 mm.


2014 ◽  
Vol 997 ◽  
pp. 396-400
Author(s):  
Yu Guang Fan ◽  
Ting Wei

The method of computational fluid dynamics (CFD) is used to three-dimensional numerical simulation for the fluid flow process of ammonium persulfate crystallizer. By using standard model, this paper respectively simulated the flow field within the crystallizer in the impeller installation height of 1.2 m while stirring speed is of 60 r/min, 100 r/min and 200 r/min; and simulated the impact of the flow field inside the crystallizer when the stirring speed of 100 r/min and impeller installation height respectively is of 0.7 m, 1.2 m and 1.7 m. That calculation results show that: the velocity gradient is mainly concentrated in the area of internal draft tube and paddle around. With the increase of impeller speed, the flow velocity of the fluid within the crystallizer corresponding increases; and the energy also gradually decreases from mixing impeller to the settlement zone with the loss of the installation height, and the kinetic energy in the bottom of the crystallizer is reduced. Considering the energy and crystallization effect, selection of mixing speed of 100 r/min or so and installation height of about 1.2 m is more appropriate.


2013 ◽  
Vol 281 ◽  
pp. 245-249
Author(s):  
Huan Zhang ◽  
Jun Chen ◽  
Feng Feng

The process of impacting adherent casting solid rocket motor under cool-flow impact was simulated using two-way fluid-solid coupling method by ANSYS workbench14.0. In order to truly reflect the interaction between the establishment of the flow field in the cool air impact process and the SRM grain, the impact pressure to the SRM grain was provided with reference to the structure of the shock tube. The process of the establishment and spread of the flow field pressure was simulated, according to the grain deformation under the cool air impact, the maximum deformation position of the grain was determined. The relationship between the amount of grain deformation and flow field pressure gradient was summed up by observing the law of flow field pressure distribution along the axial coupling surface.


2012 ◽  
Vol 569 ◽  
pp. 500-503
Author(s):  
Lian Sheng Wu ◽  
Guang Li Li ◽  
Qi Fu

A practical optimal design method of supersonic nozzle is proposed for a supersonic wind tunnel’s design. Design a set of nozzle wall lines with the same nozzle length and different Mach numbers 1.5, 2.0, 2.5. Use numerical simulation method for the verify and analysis of the designed nozzle. Mainly study the impact of the installation gradient between nozzle and test section on flow field quality. This wind tunnel is the subsonic, transonic and supersonic wind tunnel and its test section cross is 0.2 m × 0.2 m .The impact on flow field quality of the test section was studied quantitatively by using the numerical simulation method. The installation gradient index was given. It has some practical value to the construction of supersonic wind tunnel. At present, this study has been applied in construction of the wind tunnel. The gradient of the test section import shall not be greater than 0.5 mm.


Author(s):  
Zunce Wang ◽  
Yan Xu ◽  
Sen Li ◽  
Fengxia Lv ◽  
Wei Li

Based on Reynolds Stress Model (RSM), numerical simulation of flow field around Bypass Crossover Sub in the fracturing process of horizontal wells is carried out by Computational Fluid Dynamics (CFD) analysis. Distribution rules of axial velocity, tangential velocity and radial velocity of fluid field in calculation region are achieved. Results show that strong vortexes and reverse flow exist at the slots on Bypass Crossover Sub, which brings the impact of the fluid on the wall at certain angle. Impacting velocity and angle at different positions of the wall are studied in detail. A Laser Doppler Anemometer (LDA) is applied to examine the flow field velocity distribution. Experimental results agree well with the numerical simulation results, which prove the validity of turbulence model and computational method. Numerical simulation is carried out at different Length-Breadth ratio of slots on the Bypass Crossover Sub. Effect of the Length-Breadth ratio on the scale of vortexes, speed distributions and flow field near the wall area is discussed. All of these will provide some reference on structural optimization and the analysis of erosion.


2019 ◽  
Vol 944 ◽  
pp. 1199-1207
Author(s):  
Rui Yun Wang ◽  
Jin Yu Yin ◽  
Su Ping Cui

In this paper, CFD numerical simulation method was adopted to study the internal flow field of experimental dry granulating device of blast furnace slag and to research the impact of equipment structure and wind speed on cooling effectiveness. Main content included the internal flow field uniformity under different blade type and number of inlets. The results showed that the internal flow field in strip-blades device was more uniform than fan-shaped blades device. With the increase of air inlets quantity, the internal flow field in device became more uniform and stable, especially when there were 8 air inlets in the equipment.


2011 ◽  
Vol 480-481 ◽  
pp. 810-814
Author(s):  
Jian Jun Song ◽  
Xiao Ping Du ◽  
Ji Guang Zhao ◽  
Jing Peng Chen ◽  
Qiao Wang ◽  
...  

The launch site security issues have been became the focus of the world’s research for several decades. Aiming at the filling system, the pipe vibration caused by the liquid hydrogen which flowed through the bend pipe was studied. And based on the computational fluid dynamics, the flow field was simulated according to the numerical simulation method. Then, the changes of flow parameters i.e. pressure and velocity at the bend were observed. The simulation results showed that: (1) the speed and the pressure of the liquid hydrogen would have a sudden change which was caused by flow direction and it would create a vortex which could erode the pipe and lead to the pipe vibration in the region. As a result, the pipe would deteriorate caused by the vortex. (2) the flow field analysis using the numerical simulation method was feasible. And the method provided a flow field distribution directly and design basis for filling system pipes.


Sign in / Sign up

Export Citation Format

Share Document