Study on Band-Gap Characteristics of EBG Material and its Application in Microstrip Antenna

2013 ◽  
Vol 391 ◽  
pp. 512-515
Author(s):  
Zhong Qing Wang ◽  
Li Dan Peng ◽  
Bao Li ◽  
Rong Sen Xu

In this letter, the characteristics of electromagnetic band-gap (EBG) material are studied, and then a novel microstrip antenna is proposed by using EBG structure. The antenna is constituted with loading the EBG structure into the dielectric substrate. The size of microstrip patch in EBG antenna with the coaxial feed is only 0.22×0.22 whereis the free space wavelength at 5.22 GHz, which the microstrip antenna is designed by the technique of patch grooved and short pin. The simulation results show that the EBG antenna has two resonant frequencies at 5.22GHz and 5.68GHz, the gains of them reaching to 5.32dB, 4.98dB respectively. Moreover, it has a good impedance matching in 5.14GHz~5.86GHz, which covers two bandwidths of WLAN.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Tao Jiang ◽  
Tianqi Jiao ◽  
Yingsong Li

A mutual coupling reduction method between microstrip antenna array elements is proposed by using periodic L-loading E-shaped electromagnetic band gap structures. Two identical microstrip patch antennas at 2.55 GHz are settled together and used to analyze the performance of the designed two-element antenna array. The two antenna elements are settled with a distance of about0.26λ. To reduce the mutual coupling, the L-loading E-shaped electromagnetic band gap structures are used between these antenna elements. The simulated and measured results show that the isolation of the antenna array reaches 38 dB, which has a mutual coupling reduction of 26 dB in comparison with the antenna array without the decoupling structures.


2021 ◽  
Vol 9 (2) ◽  
pp. 1086-1089
Author(s):  
Suresh Akkole, Et. al.

Application of electromagnetic band-gap (EBG) structure and its use in the design of antenna and microwave integrated circuits is becoming more attractive. The recent electromagnetic band-gap structure method is capturing more importance in antenna design due to its uniqueness properties to suppress the propagation of surface waves in microstrip patch antenna. In this paper a square microstrip antenna is designed and its performance parameters are compared with geometry designed on EBG structure.  The square antenna of 29 mm x29 mm  size is designed at 2.455 GHz and analysis is done using IE3D  simulation software. The proposed work mainly focuses on modification of antenna using electronic band gap structure (EBG). The antenna parameters such as Return loss, VSWR, Gain and Bandwidth, with and without EBG are obtained using IE3D simulation tool. The Electromagnetic band-gap structures have been used to improve the performance of the gain of the antennas and radiation patterns. One of the main advantages of electromagnetic band-gap structure is its ability to suppress the surface wave current present on the microstrip antenna. Combining the square patch with EBG structure, the bandwidth of the antenna has been increased by 34.66%, and attained  gain of 44.44%  at resonant frequency around 2.4 GHz as compared to the antenna without EBG..                       


2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
Md. Shahidul Alam ◽  
Norbahiah Misran ◽  
Baharudin Yatim ◽  
Mohammad Tariqul Islam

Electromagnetic band gap (EBG) technology has become a significant breakthrough in the radio frequency (RF) and microwave applications due to their unique band gap characteristics at certain frequency ranges. Since 1999, the EBG structures have been investigated for improving performances of numerous RF and microwave devices utilizing the surface wave suppression and the artificial magnetic conductor (AMC) properties of these special type metamaterial. Issues such as compactness, wide bandwidth with low attenuation level, tunability, and suitability with planar circuitry all play an important role in the design of EBG structures. Remarkable efforts have been undertaken for the development of EBG structures to be compatible with a wide range of wireless communication systems. This paper provides a comprehensive review on various EBG structures such as three-, two-, and one-dimensional (3D, 2D, and 1D) EBG, mushroom and uniplanar EBG, and their successive advancement. Considering the related fabrication complexities, implementation of vialess EBG is an attractive topic for microwave engineers. For microstrip antennas, EBG structures are used in diversified ways, which of course found to be effective except in some cases. The EBG structures are also successfully utilized in antenna arrays for reducing the mutual coupling between elements of the array. Current challenges and limitations of the typical microstrip antennas and different EBG structures are discussed in details with some possible suggestions. Hopefully, this survey will guide to increasing efforts towards the development of more compact, wideband, and high-efficient uniplanar EBG structures for performance enhancement of antenna and other microwave devices.


Frequenz ◽  
2020 ◽  
Vol 74 (1-2) ◽  
pp. 41-51
Author(s):  
Alka Verma ◽  
Anil Kumar Singh ◽  
Neelam Srivastava ◽  
Binod Kumar Kanaujia

AbstractIn this article, a new structure comprising of a novel compact slot loaded polarization dependent Electromagnetic Band Gap structure (SLPDEBG), which enhances the performance of circularly polarized rotated square patch antenna by placing SLPDEBG unit cells around it, has been designed. The proposed antenna, having dimensions 0.640 λo x 0.640 λ x 0.0128 λo (λo stands for the free space wavelength at 2.39 GHz), shows that the measured impedance bandwidth and AR bandwidth is 120 MHz and 50 MHz, respectively, with a peak gain of 3.52 dB. Some prominent features of the proposed structure are: front to back ratio of 64, 3 db, beamwidth of 92° at xz-plane and 74° at yz-plane. This prototype antenna finds its application in wireless communication of ISM band. Good performance of the proposed antenna is verified by the close agreement between the simulated and measured results.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Suresh Akkole ◽  
Vasudevan N.

Purpose Application of electromagnetic band gap (EBG) i.e. electromagnetic band gap technique and its use in the design of microstrip antenna and MIC i.e. microwave integrated circuits is becoming more attractive. This paper aims to propose a new type of EBG fractal square patch microstrip multi band fractal antenna structures that are designed and developed. Their performance parameters with and without EBG structures are investigated and minutely compared with respect to the resonance frequency, return loss, a gain of the antenna and voltage standing wave ratio. Design/methodology/approach The fractal antenna geometries are designed from the fundamental square patch and then EBG structures are introduced. The antenna geometry is optimized using IE3D simulation tool and fabricated on low cost glass epoxy FR4, with 1.6 mm height and dielectric materials constant of 4.4. The prototype is examined by means of the vector network analyzer and antenna patterns are tested on the anechoic chamber. Findings Combining the square fractal patch antenna with an application of EBG techniques, the gain of microstrip antenna has been risen up and attained good return loss as compared to the antennas without EBG structures. The designs exhibit multi-frequency band characteristics extending in between 1.70 and 7.40 GHz. Also, a decrease in antenna size of 34.84 and 59.02 per cent for the first and second iteration, respectively, is achieved for the antenna second and third without EBG. The experimental results agree with that of simulated values. The presented microstrip antenna finds uses in industrial, scientific and medical (ISM) band, Wi-Fi and C band. This antenna can also be used for satellite and radio detection and range devices for communication purposes. Originality/value A new type of EBG fractal square patch microstrip antenna structures are designed, developed and compared with and without EBG. Because of the application of EBG techniques, the gain of microstrip antenna has been risen up and attained good return loss as compared to the antennas without EBG structures. The designs exhibit multi-frequency band characteristics extending in between 1.70 and 7.40 GHz, which are useful for Wi-Fi, ISM and C band wireless communication.


Sign in / Sign up

Export Citation Format

Share Document