Optimization on Deep Drawing and Ironing Process of Compressed Natural Gas Containers

2013 ◽  
Vol 401-403 ◽  
pp. 867-870 ◽  
Author(s):  
Wu Jiao Xu ◽  
Chun Hai Zhai ◽  
Wu Hua Li

In this article, the influence of different process parameters on the bottom thickness of CNG container during the deep drawing and ironing process has been analyzed by simulation. The bottom die fillet R, the spacer height H between blank holder and bottom die and the friction coefficient μ between punch and billet were selected as parameters for optimization. The simulation results reveals that the appropriate bottom die fillet R and spacer height H is needed to reduce the thinning of product bottom. Meanwhile, the bigger the friction coefficient μ, the thicker the product bottom. The optimized results were utilized in the experimental production and the products in the three passes meet the designed requirements, which illustrates that the simulation results have great help for the actual production.

2012 ◽  
Vol 249-250 ◽  
pp. 51-58
Author(s):  
Qing Wen Qu ◽  
Tian Ke Sun ◽  
Shao Qing Wang ◽  
Hong Juan Yu ◽  
Fang Li

A simulation of deep drawing process on the sheet metal was done by using Dynaform, the influence of blank holder force, deep drawing speed and friction coefficient on the forming speed of sheet metal in the deep drawing process were got. The forming speed of sheet metal determines the quality of deep drawing, in the deep drawing process the blank holder force and the deep drawing speed are controllable parameters, the friction coefficient can be intervened and controlled, and it’s a manifestation of the interaction of all parameters, the main factors which influence the friction coefficient just have blank holder force, deep drawing speed and lubrication except the material. The conclusion of this study provides the basic data for the analysis of the lubrication of mould, the study of lubricant and the prediction of the service life of deep drawing die.


Author(s):  
Iman Rostamsowlat ◽  
Ahmad Afsari ◽  
Maziar Janghorban

In this paper, effects of friction coefficient and tool geometry on the thickness variations of a cylindrical cup were studied. Blank is made of SPXI250 alloy sheet which was analyzed by Finite Element Method (FEM). This not been studied yet. Finite Element modeling of the deep drawing process was conducted using ABAQUS/EXPLICIT software. A set of appropriate die and punch were designed for experimental tests. The results of the simulation showed that a change in the friction coefficient of the die-blank interface leads to a significant changes in the cup thickness. Moreover, the results revealed that the influence of die nose radius on the final cup thickness variations is greater than that of the punch nose radius. The simulation results of this study were compared with the experimental results and those of the other investigators’. The comparisons of the experimental and simulation results with those of the other researchers were so satisfactory.


2011 ◽  
Vol 189-193 ◽  
pp. 2892-2896 ◽  
Author(s):  
Xiao Ting Xiao ◽  
Li Cheng Huang ◽  
Yi Juan Liao ◽  
Li Guang Tan ◽  
Qiao Yu Chen

In this paper, the flow rule of metal during the deep drawing of the non-symmetry workpieces was investigated by means of the numerical simulation of deep-drawing processes of square cup under bilateral constrained conditions. The numerical simulation was carried out by advanced analysis software Dynaform5.5. SUS304 stainless steel was used as the deforming materials. The influence of different friction coefficient and blank holder force on the drawing forming quality was analyzed. The results showed that the material flow in different areas has different trends with increase of friction coefficient and blank holder force.


2021 ◽  
Author(s):  
Huiting Wang ◽  
Jianfei Kong ◽  
Hongbo Pan ◽  
Jinxiu Fang ◽  
Xiaohui Shen

Abstract This study focus on the effects of the key process parameters during a modified hydrodynamic deep drawing utilizing a combined floating and static die cavity (HDDC). A two-stage hydraulic loading path is recommended in the novel process, and each stage of the hydraulic loading path is a linear loading path with an inflection point. The method to evaluate the wrinkle and forming dimension precision of the formed parts is introduced at first. Then the influence of the key parameters of the two-stage hydraulic loading path as well as the blank holder force on the dimension accuracy and surface quality of the formed parts was studied in detail. The results showed that the influence of the liquid pressure during the second stage is more significant than that in the first stage in hydrodynamic deep drawing utilizing a combined floating and static die cavity. The initial pressure of the second stage and the maximum pressure arriving moment during this stage have a significant impact on the dimensional accuracy of the formed parts, and the smaller initial pressure or the later the maximum pressure of the second stage arrives, the higher the accuracy of the formed part is. Similarly, the influence of the blank holder force in the second stage on the forming accuracy is more significant than that in the first stage.


1993 ◽  
Vol 115 (1) ◽  
pp. 110-117 ◽  
Author(s):  
S. A. Majlessi ◽  
D. Lee

The deep drawing process of square and rectangular shells were investigated under different process conditions, and using two different drawing quality steels. The main objective was to identify the significance of some of the process parameters on the outcome of the drawing operation. The process parameters examined were shape and size of blank, the blank-holder force and frictional condition between blank and tooling. The results of this investigation were presented in terms of punch load, through thickness and in-plane strain distributions, formations of flange wrinkles and fracture, and the largest possible blank size that can be drawn successfully. Some of these experimental results were used to verify the validity of a simplified analytical model which was described in the first part of this paper.


2012 ◽  
Vol 602-604 ◽  
pp. 1899-1902
Author(s):  
Ming Wei Wang ◽  
Long Chen ◽  
Xiu Jun Zhao ◽  
Shu Li

The effects of stamping process parameters (blank thickness, blank holder force, friction coefficient, die clearance) on the formability of an automobile reinforced plate were investigated. The process parameters are optimized based on the results of orthogonal testing. The optimal process parameters were obtained by simulation result analysis of variance. The accuracy of numerical simulation is verified by the experiment, which provides guidance for the actual production.


2008 ◽  
Vol 07 (01) ◽  
pp. 131-135
Author(s):  
TUNG-SHENG YANG ◽  
RUEY-FANG SHYU

Deep drawing process is very useful in industrial field because of its efficiency. The earing of deep drawing process is affected by many material and process parameters, such as the strain-hardening exponent, anisotropic property of blank, blank holder force, the profile radius of die, etc. In this paper, the material anisotropy and process parameters effect on the earing are investigated.


2015 ◽  
Vol 39 (3) ◽  
pp. 605-614 ◽  
Author(s):  
Van Quang Nguyen ◽  
Balamurugan Ramamurthy ◽  
Jau-Wen Lin

The plastic deformation behavior of axis symmetric aluminium 6061 cups was determined by analyzing the four important deep drawing process parameters, namely blank temperature, die edge radius, blank holder force and friction coefficient. Taguchi techniques along with finite element method (FEM) were used to determine the importance of process parameters. The Taguchi method was used to analyze the influence of each process parameter. From the deformation result and analysis of variance (ANOVA), it was determined that the temperature of the blank has a major influence on the deformation characteristic of aluminium 6061 sheets followed by die edge radius, coefficient of friction, and blank holder force. The optimum levels of the four factors in determining the deformed cup heights are found to be blank temperature of 450°C, die edge radius of 14 mm, coefficient of friction of 0.60 and blank holder force of 9 KN.


2019 ◽  
Vol 9 (5) ◽  
pp. 4830-4834
Author(s):  
W. Rajhi

This work focuses on the numerical simulation of warm deep drawing operation of car sump oil made with Al 6061-T6 aluminum alloy for the purpose of process optimization. The thermo visco-plastic behavior with damage effect of the material is described by the Johnson-Cook (JC) model. The JC model parameters for the Al 6061-T6 Aluminum alloy were exploited. Numerical simulation of the deep drawing operation was performed with the use of the ABAQUS FE software thanks to the dynamic Explicit Temperature-Displacement algorithm. The design of the different tools is obtained on the basis of the geometry of the finished product. Designing of punch, die and blank holder is performed using CATIA 3D CAD software. The warm forming method involves the heating of the blank holder and the die to a certain temperature, whereas, the punch is kept at room temperature. In this study, predefined temperatures of the die and blank holder and punch speed will be investigated among other stamping parameters. The computed damage evolution curves for a given set of the process parameters are retrieved at the end of the simulation to determine suitable forming conditions. It can be noted that the slower the damage evolution achieved within the blank, the more appropriate the process parameters. Thus, by increasing strain rate, main cracks change location.


2010 ◽  
Vol 148-149 ◽  
pp. 721-727
Author(s):  
Kang Chen ◽  
Tao Zhou ◽  
Cheng Yun Peng ◽  
Yuan Fang Chen

Semi-ball bottom cylindrical deep drawing is different from the traditional deep drawing, since it is not only characteristics of traditional drawing, but also of bulging. According to the semi-ball bottom cylindrical deep drawing features, the stress conditions of the sheet in different regions have been analyzed by a mathematical modelling. In addition, the effects of processing parameters on the forming limit of the sheet in semi-ball bottom cylindrical deep drawing have been investigated by experimental method and simulation based on dynaform, respectively. It is found that the experimental results are consistent to that in simulation and the results show that the formability of the sheet is influenced greatly by the blank holder force, friction coefficient and thickness. With the blank holder force and friction coefficient decreasing and the thickness increasing, the bulging area can be expanded, which is beneficial to the improvement of the forming limit height of the semi-ball bottom cylindrical deep drawing parts.


Sign in / Sign up

Export Citation Format

Share Document