Phosphate Removal from Aqueous Solution Using Fly Ash Modified with Fe-Cu Bimetal Oxide

2013 ◽  
Vol 438-439 ◽  
pp. 42-45 ◽  
Author(s):  
Ke Xu ◽  
Xu Luo ◽  
Chun Guang Li ◽  
Jun Ling Niu

In this work the adsorption of phosphate using the Fe-Cu bimetal oxide modified fly ash was studied. The experimental results showed that phosphate could be effectively removed in the pH range between 4 and 10. The removal percentage of phosphate reached maximum at pH 6.0. The adsorption of phosphate by the modified fly ash was rapid, and the adsorption percentage of phosphate could reach 91.20% in 5 minutes. The removal efficiency of phosphate increased with the increase of adsorbent dosage and the decrease of the initial concentration. The adsorption of phosphate could be described well by Langmuir isotherm, the Langmuir constant Q0 was 26.03mg/g.

2012 ◽  
Vol 621 ◽  
pp. 296-302
Author(s):  
Ke Xu ◽  
Tong Deng ◽  
Chun Guang Li ◽  
Jun Ling Niu

In this work the adsorption of phosphate using the magnetic Fe-Zn bimetal oxide modified fly ash was studied. The experimental results showed that the effective pH range for the adsorption of phosphate was between 3.0 and 9.0. The removal percentage of phosphate reached maximum at pH 8.0. Kinetic study showed that the phosphate adsorption was well described by pseudo second order model. The removal efficiency of phosphate increased with the increase of adsorbent dosage and the decrease of the initial concentration. The adsorption of phosphate could be described well by Langmuir isotherm, the Langmuir constant Q0 was 24.15mg/g.


2011 ◽  
Vol 393-395 ◽  
pp. 1089-1092
Author(s):  
Ru Liu ◽  
Xiao Xia Hang ◽  
Chun Ying Wang

Various parameters (time, initial concentration, pH value and temperature) are investigated. The results show that with increasing the temperature decreased the absorbance. The optimal condition is that the maximum adsorption is 0.47mg•g-1 at303K, pH 1. Adsorption process fits the Langmuir isotherm equation, the adsorption reaction is exothermal reaction.


Fuel ◽  
2010 ◽  
Vol 89 (12) ◽  
pp. 3668-3674 ◽  
Author(s):  
Ke Xu ◽  
Tong Deng ◽  
Juntan Liu ◽  
Weigong Peng

2012 ◽  
Vol 499 ◽  
pp. 419-422
Author(s):  
Yong Chen ◽  
Hui Xu ◽  
Jin Bao Sun ◽  
Chang Long Zhang

In this work attapulgite and chitosan were employed to prepare composites as eco-friendly adsorbent. Study on the removal efficiency of the adsorbent for copper ions in aqueous solution was carried out. External factors such as the amount of attapulgite in the composites, temperature, initial concentration of copper ions, adsorption time and adsorbent dosage how to influence the removal efficiency of composites were investigated. The results showed that at room temperature, 0.37g adsorbent can reach maximum adsorption rate, which the mass ratio of attapulgite and chitosan is 1:1, the initial concentration of copper ions is 50mg / L and absorption time is 2h.


2019 ◽  
Vol 70 (5) ◽  
pp. 1507-1512
Author(s):  
Baker M. Abod ◽  
Ramy Mohamed Jebir Al-Alawy ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor

The aim of this study is to use the dry fibers of date palm as low-cost biosorbent for the removal of Cd(II), and Ni(II) ions from aqueous solution by fluidized bed column. The effects of many operating conditions such as superficial velocity, static bed height, and initial concentration on the removal efficiency of metal ions were investigated. FTIR analyses clarified that hydroxyl, amine and carboxyl groups could be very effective for bio-sorption of these heavy metal ions. SEM images showed that dry fibers of date palm have a high porosity and that metal ions can be trapped and sorbed into pores. The results show that a bed height of 6 cm, velocity of 1.1Umf and initial concentration for each heavy metal ions of 50 mg/L are most feasible and give high removal efficiency. The fluidized bed reactor was modeled using ideal plug flow and this model was solved numerically by utilizing the MATLAB software for fitting the measured breakthrough results. The breakthrough curves for metal ions gave the order of bio-sorption capacity as follow: Cd(II)]Ni(II).


2017 ◽  
Vol 76 (6) ◽  
pp. 1466-1473 ◽  
Author(s):  
M. H. Salmani ◽  
M. Mokhtari ◽  
Z. Raeisi ◽  
M. H. Ehrampoush ◽  
H. A. Sadeghian

Wastewater containing pharmaceutical residual components must be treated before being discharged to the environment. This study was conducted to investigate the efficiency of tungsten-carbon nanocomposite in diclofenac removal using design of experiment (DOE). The 27 batch adsorption experiments were done by choosing three effective parameters (pH, adsorbent dose, and initial concentration) at three levels. The nanocomposite was prepared by tungsten oxide and activated carbon powder in a ratio of 1 to 4 mass. The remaining concentration of diclofenac was measured by a spectrometer with adding reagents of 2, 2′-bipyridine, and ferric chloride. Analysis of variance (ANOVA) was applied to determine the main and interaction effects. The equilibrium time for removal process was determined as 30 min. It was observed that the pH had the lowest influence on the removal efficiency of diclofenac. Nanocomposite gave a high removal at low concentration of 5.0 mg/L. The maximum removal for an initial concentration of 5.0 mg/L was 88.0% at contact time of 30 min. The results of ANOVA showed that adsorbent mass was among the most effective variables. Using DOE as an efficient method revealed that tungsten-carbon nanocomposite has high efficiency in the removal of residual diclofenac from the aqueous solution.


2020 ◽  
Author(s):  
Zeinab Ghorbani

This study aimed to investigate the efficiency of the electro-persulfate process in removing acid blue 25 from aqueous solution. In order to optimize the parameters, the OFAT method was used, and the effect of three main parameters, including pH, sodium persulfate salt concentration, and current intensity was investigated. According to the results, the optimal removal efficiency of 94% in 60 minutes was obtained under conditions of pH=5, the initial concentration of sodium persulfate=250 mg / L, and the current=500 mA. According to the results of this study, the electro-persulfate process sulfate process can be an efficient process for dye removal from industrial effluents.


1996 ◽  
Vol 13 (6) ◽  
pp. 527-536 ◽  
Author(s):  
L.J. Alemany ◽  
M.C. Jiménez ◽  
M.A. Larrubia ◽  
F. Delgado ◽  
J.M. Blasco

The present work examines the possible use of fly ash, a byproduct of coal power stations, as a means of removing phenol from water, or equivalently, of restricting its movement in solid wastes or soil. Equilibrium experiments were performed to evaluate the removal efficiency of fly ash. The adsorption experiments were undertaken using fly ash treated at three different pH levels and with three different temperatures. The results indicate that although phenol can be removed from water, this depends markedly on the temperature and pH value of the treatment solution employed.


2012 ◽  
Vol 27 ◽  
pp. 61-66 ◽  
Author(s):  
Kedar Nath Ghimire

Removal of fluoride is investigated onto several metal ions loaded phosphorylated orange juice residue and commercially available alumina. The experimental results revealed that cerium (IV) loaded phosphorylated orange waste indicated excellent fluoride removal efficiency at acidic pH range and while that lanthanum loaded at neutral pH range. Both the metal loaded adsorbents are found superior to the commercially available activated alumina.DOI: http://dx.doi.org/10.3126/jncs.v27i1.6660 J. Nepal Chem. Soc., Vol. 27, 2011 61-66 


2013 ◽  
Vol 800 ◽  
pp. 132-138 ◽  
Author(s):  
Li Li ◽  
Si Wei Pan ◽  
Jiang Jun Hu ◽  
Ji Fu Kuang ◽  
Min Qi ◽  
...  

Mercury in the flue gas in coal-fired power plant as the research object using halogen compound as the modified material, the fly ash was modified by chemical immersion method,Study on adsorption agent, the adsorption temperature, modified material and loading on mercury adsorption of flue gas in coal-fired power plants. Experiments showed that, iodine adsorption properties of modified fly ash was the most significant, with the increase of the sorbent dosage, Hg removal efficiency increased, fly ash adsorption amount of change was not obvious, between 80-140°C temperature range, fly ash on mercury existed mainly physical adsorption, the mercury removal efficiency decreased with the increase of temperature, chemical adsorption occurred at 160°C, mercury removal efficiency increased.


Sign in / Sign up

Export Citation Format

Share Document