Analysis the Interface of Amplifier in GPON System by PSpice

2010 ◽  
Vol 44-47 ◽  
pp. 3833-3838
Author(s):  
Li Li ◽  
Ji Jun Zhang

Model help to understand the system there may be a signal reflection and impedance matching problem. Most fiber integrated circuits from Maxim use Current Mode Logic (CML), Positive Emitter Coupled Logic (PECL), and Low Voltage Differential Signal (LVDS) I/O formats. Language can be set up through the PSpice circuit model of the IC, with an ideal voltage controlled current source of alternative sources and active circuit elements. And the use of spice macro-model simulation to test the circuit performance of the chip interface design. In this paper, it takes the model of amplifier IC in GPON receiver front-end for example to shows the steps and importance of interface simulation in GPON system by PSpice macro-model.

2021 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Orazio Aiello

The paper deals with the immunity to Electromagnetic Interference (EMI) of the current source for Ultra-Low-Voltage Integrated Circuits (ICs). Based on the properties of IC building blocks, such as the current-splitter and current correlator, a novel current generator is conceived. The proposed solution is suitable to provide currents to ICs operating in the sub-threshold region even in the presence of an electromagnetic polluted environment. The immunity to EMI of the proposed solution is compared with that of a conventional current mirror and evaluated by analytic means and with reference to the 180 nm CMOS technology process. The analysis highlights how the proposed solution generates currents down to nano-ampere intrinsically robust to the Radio Frequency (RF) interference affecting the input of the current generator, differently to what happens to the output current of a conventional mirror under the same conditions.


Author(s):  
Guangbin Zhang ◽  
Sooping Saw ◽  
Jin Liu ◽  
S. Sterrantino ◽  
D.K. Johnson ◽  
...  

2016 ◽  
Vol 25 (06) ◽  
pp. 1650066 ◽  
Author(s):  
Pantre Kompitaya ◽  
Khanittha Kaewdang

A current-mode CMOS true RMS-to-DC (RMS: root-mean-square) converter with very low voltage and low power is proposed in this paper. The design techniques are based on the implicit computation and translinear principle by using CMOS transistors that operate in the weak inversion region. The circuit can operate for two-quadrant input current with wide input dynamic range (0.4–500[Formula: see text]nA) with an error of less than 1%. Furthermore, its features are very low supply voltage (0.8[Formula: see text]V), very low power consumption ([Formula: see text]0.2[Formula: see text]nW) and low circuit complexity that is suitable for integrated circuits (ICs). The proposed circuit is designed using standard 0.18[Formula: see text][Formula: see text]m CMOS technology and the HSPICE simulation results show the high performance of the circuit and confirm the validity of the proposed design technique.


Author(s):  
M.G. Rosenfield

Minimum feature sizes in experimental integrated circuits are approaching 0.5 μm and below. During the fabrication process it is usually necessary to be able to non-destructively measure the critical dimensions in resist and after the various process steps. This can be accomplished using the low voltage SEM. Submicron linewidth measurement is typically done by manually measuring the SEM micrographs. Since it is desirable to make as many measurements as possible in the shortest period of time, it is important that this technique be automated.Linewidth measurement using the scanning electron microscope is not well understood. The basic intent is to measure the size of a structure from the secondary electron signal generated by that structure. Thus, it is important to understand how the actual dimension of the line being measured relates to the secondary electron signal. Since different features generate different signals, the same method of relating linewidth to signal cannot be used. For example, the peak to peak method may be used to accurately measure the linewidth of an isolated resist line; but, a threshold technique may be required for an isolated space in resist.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 551
Author(s):  
Zhongjian Bian ◽  
Xiaofeng Hong ◽  
Yanan Guo ◽  
Lirida Naviner ◽  
Wei Ge ◽  
...  

Spintronic based embedded magnetic random access memory (eMRAM) is becoming a foundry validated solution for the next-generation nonvolatile memory applications. The hybrid complementary metal-oxide-semiconductor (CMOS)/magnetic tunnel junction (MTJ) integration has been selected as a proper candidate for energy harvesting, area-constraint and energy-efficiency Internet of Things (IoT) systems-on-chips. Multi-VDD (low supply voltage) techniques were adopted to minimize energy dissipation in MRAM, at the cost of reduced writing/sensing speed and margin. Meanwhile, yield can be severely affected due to variations in process parameters. In this work, we conduct a thorough analysis of MRAM sensing margin and yield. We propose a current-mode sensing amplifier (CSA) named 1D high-sensing 1D margin, high 1D speed and 1D stability (HMSS-SA) with reconfigured reference path and pre-charge transistor. Process-voltage-temperature (PVT) aware analysis is performed based on an MTJ compact model and an industrial 28 nm CMOS technology, explicitly considering low-voltage (0.7 V), low tunneling magnetoresistance (TMR) (50%) and high temperature (85 °C) scenario as the worst sensing case. A case study takes a brief look at sensing circuits, which is applied to in-memory bit-wise computing. Simulation results indicate that the proposed high-sensing margin, high speed and stability sensing-sensing amplifier (HMSS-SA) achieves remarkable performance up to 2.5 GHz sensing frequency. At 0.65 V supply voltage, it can achieve 1 GHz operation frequency with only 0.3% failure rate.


Author(s):  
K. Parow-Souchon ◽  
D. Cuadrado-Calle ◽  
S. Rea ◽  
M. Henry ◽  
M. Merritt ◽  
...  

Abstract Realizing packaged state-of-the-art performance of monolithic microwave integrated circuits (MMICs) operating at millimeter wavelengths presents significant challenges in terms of electrical interface circuitry and physical construction. For instance, even with the aid of modern electromagnetic simulation tools, modeling the interaction between the MMIC and its package embedding circuit can lack the necessary precision to achieve optimum device performance. Physical implementation also introduces inaccuracies and requires iterative interface component substitution that can produce variable results, is invasive and risks damaging the MMIC. This paper describes a novel method for in situ optimization of packaged millimeter-wave devices using a pulsed ultraviolet laser to remove pre-selected areas of interface circuit metallization. The method was successfully demonstrated through the optimization of a 183 GHz low noise amplifier destined for use on the MetOp-SG meteorological satellite series. An improvement in amplifier output return loss from an average of 12.9 dB to 22.7 dB was achieved across an operational frequency range of 175–191 GHz and the improved circuit reproduced. We believe that our in situ tuning technique can be applied more widely to planar millimeter-wave interface circuits that are critical in achieving optimum device performance.


Sign in / Sign up

Export Citation Format

Share Document