Testing Research of Aspect Ratio on Corrugated Box Compression Strength

2011 ◽  
Vol 48-49 ◽  
pp. 1213-1216 ◽  
Author(s):  
Zhuan Wei ◽  
Guang Jun Hua ◽  
De Jian Zhao

The aspect ratio is one of the important factors that impact the corrugated box compression strength. In this paper, the three most commonly method that can be used to obtain the corrugated boxes’ compression strength, namely testing method, classic formula method and computer simulation method were compared. Selecting some 0201 BC flute corrugated boxes as the object, on the condition that the cardboard materials, carton height and circumference of the corrugated box is at the same, the compression strength of corrugated boxes which aspect range from 1 to 3 were tested and calculated respectively by compression strength testing method and classical formula. The results show that when the aspect ratio changes from 1 to 3, the compression strength increase at first, and then decrease; the compression strength reach maximum when the aspect ratio at 1.6 or so. The results show that the classic formula calculation data are large deviate from the testing ones. Research shows that due to not fully take into account the influence of corrugated cardboard quality, box forming process, temperature and humidity and other factors, the currently classic compression strength formula are more conservative.

2011 ◽  
Vol 90-93 ◽  
pp. 1295-1298
Author(s):  
Xiu Guang Song ◽  
Kai Yao ◽  
Qing Dong Wu ◽  
Ji Shan Liu

The effective reinforcement depth was the main design basis of dynamic consolidation. The concept and affecting factors of the effective reinforcement depth were analyzed in the paper. The evaluating standards and determining methods were also summarized. The effective reinforcement depth could be determined from the field test and the in-situ test index. Three kinds of methods could be used to determine the effective reinforcement depth: field testing method, numerical simulation method and formula method.


2016 ◽  
Vol 693 ◽  
pp. 800-806
Author(s):  
You Dan Guo

In high-strength steel hot forming, under the heating and quenching interaction, the material is oxidized and de-carbonized in the surface layer, forming a gradual change microstructure composed of ferrite, ferrite and martensite mixture and full martensite layers from surface to interior. The experiment enunciation: Form the table to ferrite, ferrite and martensite hybrid organization, completely martensite gradual change microstructure,and make the strength and rigidity of material one by one in order lower from inside to surface, ductility one by one in order increment in 22MnB5 for hot forming;Changes depends on the hot forming process temperature and the control of reheating furnace gas content protection, when oxygen levels of 5% protective gas, can better prevent oxidation and decarburization;Boron segregation in the grain boundary, solid solution strengthening, is a major cause of strength increase in ;The gradual change microstructure in outer big elongation properties, make the structure of the peak force is relatively flat, to reduce the peak impact force of structure, keep the structure of high energy absorption capacity;With lower temperature, the material yield strength rise rapidly,when the temperature is 650 °C, the yield strength at 950 °C was more than 3 times as much.


2013 ◽  
Vol 554-557 ◽  
pp. 423-432 ◽  
Author(s):  
Patrick Böhler ◽  
Frank Härtel ◽  
Peter Middendorf

In several fields of engineering the use of carbon fibre reinforced material (CFRP) is increasing. Minimized weight due to CFRPs could lead to lower consumption of raw materials especially in the automotive area. The goal within the research project TC² is the decrease of costs and production time for composite materials. To achieve better performance to weight ratio and to get acceptable production conditions the draping of dry unidirectional textiles and a following RTM process is investigated. Due to the high degree of complexity of automotive structures the forming process is challenging. Gapping in the textile could appear at corners as well as wrinkling or flexion of the fibres. To be able to define the amount and direction of layers or patches it is necessary to know the limits of forming for unidirectional material and to be able to predict the behaviour of the textile during the forming process. For the definition of the process limits several draping strategies are performed on different corner blend geometries. The goal of that work is to define the critical gradient of the flange to get first failures such as wrinkling or gapping. It is also important to understand the influence of different draping strategies. Parallel to the experimental tests a mesoscopic simulation method using an approach with roving and sewing thread is developed and presented. It is able to predict the material behaviour in critical areas (gapping, wrinkling). Different Young’s moduli and failure criteria can be implemented for the two main directions as well as for the bending of the textile. A validation with the experimental results is performed with the aim to enable the prediction of the textile behaviour using simulation methods.


2011 ◽  
Vol 308-310 ◽  
pp. 189-192
Author(s):  
Long Xing Chen ◽  
Wen Qi Ma ◽  
He Chun Yu ◽  
Hai Yan Liu ◽  
Hong Wang Du

The aerostatic circular thrust bearing was taken as a study subject. The numerical simulation method was used to calculate the flow passage. Meanwhile, the single-point testing method was used to test the pressure distribution. The simulation and experiment measurement results were compared and analyzed. The results show that: The single-point testing method is effective to capture the change of flow characteristics. The overall results of simulation and testing coincide with each other well. In the range of cone cavity, the flow pattern for the gas is turbulent flow, and the flow field should be divided into different zones for simulation.


Author(s):  
Frank G. Lee ◽  
M. David Hanna

A parametric study was conducted to determine how the design features and forming parameters affect part thinning and forming time in the Superplastic Forming Process (SPF). Explicit formulas, describing the maximum percent thinning and the forming time for channel parts formed by the SPF process as a function of eight designs and forming parameters, were derived. The formulas are good approximations of those obtained by finite element simulation analyses and physical experiments. Thinning of the channels was influenced most by the component aspect ratio (height versus width) and entry radius at top of the channel forming tool. The forming time was most influenced by strain rate, aspect ratio and tool bottom radius. A design domain can be established to avoid excessive thinning. The Taguchi design-of-experiment method was applied to select parameter combinations, and the MARC finite element code was used to conduct sectional analysis for various combinations.


2011 ◽  
Vol 189-193 ◽  
pp. 2642-2646 ◽  
Author(s):  
Qian Li ◽  
Yi Bian ◽  
Zhi Ping Zhong ◽  
Gui Hua Liu ◽  
Ying Chen

The cold forging process of large module spur gear with four modules and 59mm breadth is performed by means of numerical simulation method. Two processes to forming such spur gears were compared by the simulation method, one is with the closed-die performing and extrusion in the finish-forging, the other is with divided-flow method in the finish-forging. Especially, the divided-flow method is analyzed in detail. The necessary reference and basis to realize practical cold precision forging process of spur gear with large modulus is provided eventually.


2005 ◽  
Vol 475-479 ◽  
pp. 2819-2822 ◽  
Author(s):  
Yin Zhang ◽  
Jun Fei Fan ◽  
You Duo He ◽  
San Bing Ren ◽  
Jing Guo Zhang ◽  
...  

Through the probability simulation method, the statistical model of mass metal liquid droplets during metal spray forming process was developed and the ejecting process of molten steel was studied. The distribution of metal liquid droplets, their different initial velocity and the original appear location during spray forming were obtained based on the above computation. After made statistic and analyzed on large number of metal liquid droplets, the forming and motion of liquid drop in whole space were defined in detail, which provided the precondition and reference for further study of liquid droplets deposition process on substrate.


2019 ◽  
Vol 5 (1) ◽  
pp. 29 ◽  
Author(s):  
Nurullah Soylu ◽  
Ahmet Ferhat Bingöl

SIFCON (Slurry Infiltrated Fiber Reinforced Concrete) is a composite which occur hardening of the matrix phase, consists of cement, water, mineral additives, fine sand, water reducing plasticizer, and reinforced with high volume fiber (5–20%). The main difference from the high strength concrete (HSC) is the ductile behaviour at failure. However, the brittleness increases with the strength increase in HSC, SIFCON has a ductile behaviour because of the high volume fiber content, low permeability, high durability. Despite fiber content is 2-3% in fiber reinforced concrete, fiber content may be ten times more in SIFCON and ductility is gained. This concrete is suggested to be used in military buildings against explosion, industrial grounds, airports, and bridge feet. In this study, in order to investigate the compressive and flexural strengths of SIFCON, the aspect ratio and fiber volume of steel fibers were chosen as variable and the effects of these parameters on compressive and flexural strengths were investigated. In the study, steel fibers with aspect ratio of 40, 55, 65, and 80 were used in 0, 4, 8 and 12% ratios. The water/binder ratio was kept constant at 0.35. Silica fume is used 10% and water-reducing plasticizer is used 1.5% of cement by weight. 7 and 28 days cured samples were subjected to compressive and flexural tests and the results were compared. As a result of the tests carried out, increases in both the compressive and flexural strengths of SIFCON specimens were determined with increasing fiber volume up to 8%. Strength reductions were observed at higher ratios. In cases where the fiber volume is too high, it has been seen that the strengths were decreased. The reason of strength reduction can be explained by the difficulty of passing ability of mortar between the fibers. The highest strengths were obtained from fibers with the aspect ratio of 80. Increase in the aspect ratio as well as increases in compressive and flexural strengths have been found.


Author(s):  
Haiyan Bie ◽  
Zongrui Hao ◽  
Jianjun Ye

As one of the carbon-free energies, hydrogen is considered as an important energy carrier in the 21st century. The minimum ignition energy of hydrogen is the lowest among flammable gases, hence, hydrogen leaking from pinholes, narrow gaps, or broken pipes can be ignited by ignition sources such as static electricity. Understanding of the characteristics of the hydrogen jet release is crucial for the better design and the applications. In this paper, the hydrogen under-expanded jet and flammable envelope were studied by simulation method. The effects of the nozzle shape and release pressure on the under-expanded jet, the downstream shock structure and flammable envelope were investigated. The simulation results showed that the nozzle geometry had great influence hydrogen under-expanded jet. And the maximum flammable length increased with the increasing of aspect ratio. For the split nozzle, with the increasing of pressure the hydrogen diffusion region of minor axes in the near-to-nozzle field increased but decreased of major axes.


Sign in / Sign up

Export Citation Format

Share Document