Volume Measurement Method for Irregular Objects Based on Shape from Shading

2014 ◽  
Vol 494-495 ◽  
pp. 789-792
Author(s):  
Hong She Dang ◽  
Chu Jia Guo

In this paper, we propose a volume measurement method for irregular objects. And three cameras were used in the image acquisition system. In order to reduce the intensity level and be more coincident with the 3D reconstruction method, a method called Histogram Acceleration has been used. Instead of using the regular shape from shading method, the relation between intensity and the missed 3D information was found. This method is valid within a certain error range. Its showed by experiment that this method has a good performance when dealing with objects with a smooth and convex surface.

2010 ◽  
Vol 33 ◽  
pp. 299-303
Author(s):  
Zhong Yan Liu ◽  
Guo Quan Wang ◽  
Dong Ping Wang

A method was proposed to gain three-dimensional (3D) reconstruction based on binocular view geometry. Images used to calibrate cameras and reconstruct car’s rearview mirror by image acquisition system, by calibration image, a camera's intrinsic and extrinsic parameters, projective and fundamental matrixes were drawn by Matlab7.1;the collected rearview mirror images is pretreated to draw refined laser, extracted feature points, find the very appropriate match points by epipolar geometry principle; according to the camera imaging model to calculate the coordinates of space points, display point cloud, fitting space points to reconstruct car’s rearview mirror; experimental results show this method can better restore the car’s rearview mirror of 3D information.


2012 ◽  
Vol 157-158 ◽  
pp. 1008-1011
Author(s):  
Hui Huang Zhao ◽  
Yao Nan Wang ◽  
Ya Qi Sun ◽  
Jian Zhen Chen

Human face three-dimensional (3D) reconstruction is a challenging problem. In this paper, we propose a human face fast- 3D- reconstruction method based on image processing with a single image. Shape from shading (SFS) is chosen to reconstruct the human face. First, SFS theory is introduced. It has the advantage of fast 3D reconstruction and only need a single image. Secondly, because the noise will affect the 3D reconstruction result greatly, wavelet transform and wavelet packet transform are introduced and used in image denoising respectively. The experiment has shown that the method based on wavelet transform produces the best denoising result than wavelet packet transform. At last, a human face 3D reconstruction algorithm based on a single image is proposed. The experimental results show that a human face 3D model can be reconstructed in fast by proposed algorithm.


2020 ◽  
Vol 10 (8) ◽  
pp. 2914
Author(s):  
Ruixin Wang ◽  
Xin Wang ◽  
Di He ◽  
Lei Wang ◽  
Ke Xu

As a classical method widely used in 3D reconstruction tasks, the multi-source Photometric Stereo can obtain more accurate 3D reconstruction results compared with the basic Photometric Stereo, but its complex calibration and solution process reduces the efficiency of this algorithm. In this paper, we propose a multi-source Photometric Stereo 3D reconstruction method based on the fully convolutional network (FCN). We first represent the 3D shape of the object as a depth value corresponding to each pixel as the optimized object. After training in an end-to-end manner, our network can efficiently obtain 3D information on the object surface. In addition, we added two regularization constraints to the general loss function, which can effectively help the network to optimize. Under the same light source configuration, our method can obtain a higher accuracy than the classic multi-source Photometric Stereo. At the same time, our new loss function can help the deep learning method to get a more realistic 3D reconstruction result. We have also used our own real dataset to experimentally verify our method. The experimental results show that our method has a good effect on solving the main problems faced by the classical method.


2012 ◽  
Vol 522 ◽  
pp. 886-890 ◽  
Author(s):  
Feng He Wu ◽  
Jin Fen Wang ◽  
Jun Wang ◽  
Yu Bo Ren

The image-based 3D reconstruction technique is an important method of 3D data passive acquired in computer vision. Aimed at the limitation of traditional SFS based 3D surface reconstruction method, a combined image-based 3D surface reconstruction method is given in this paper. Firstly, the pretreatment method of gradation is applied to convert the input color image to 256 gray image; secondly, shape from shading method is applied to recover the 3D profile of object; finally, the B-spline technique is adopted to reconstruct the model of surface and improve the resolution of surface. The key techniques such as the principle and algorithm of B-spline interpolation reconstruction are analyzed, and the experimental results are also given. The single-image based 3D reconstruction method given in this paper will supply a helpful condition for the extensive used of SFS technique.


2021 ◽  
Vol 13 (11) ◽  
pp. 2185
Author(s):  
Yu Tao ◽  
Sylvain Douté ◽  
Jan-Peter Muller ◽  
Susan J. Conway ◽  
Nicolas Thomas ◽  
...  

We introduce a novel ultra-high-resolution Digital Terrain Model (DTM) processing system using a combination of photogrammetric 3D reconstruction, image co-registration, image super-resolution restoration, shape-from-shading DTM refinement, and 3D co-alignment methods. Technical details of the method are described, and results are demonstrated using a 4 m/pixel Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) panchromatic image and an overlapping 6 m/pixel Mars Reconnaissance Orbiter Context Camera (CTX) stereo pair to produce a 1 m/pixel CaSSIS Super-Resolution Restoration (SRR) DTM for different areas over Oxia Planum on Mars—the future ESA ExoMars 2022 Rosalind Franklin rover’s landing site. Quantitative assessments are made using profile measurements and the counting of resolvable craters, in comparison with the publicly available 1 m/pixel High-Resolution Imaging Experiment (HiRISE) DTM. These assessments demonstrate that the final resultant 1 m/pixel CaSSIS DTM from the proposed processing system has achieved comparable and sometimes more detailed 3D reconstruction compared to the overlapping HiRISE DTM.


2015 ◽  
Vol 75 (2) ◽  
Author(s):  
Ho Wei Yong ◽  
Abdullah Bade ◽  
Rajesh Kumar Muniandy

Over the past thirty years, a number of researchers have investigated on 3D organ reconstruction from medical images and there are a few 3D reconstruction software available on the market. However, not many researcheshave focused on3D reconstruction of breast cancer’s tumours. Due to the method complexity, most 3D breast cancer’s tumours reconstruction were done based on MRI slices dataeven though mammogram is the current clinical practice for breast cancer screening. Therefore, this research will investigate the process of creating a method that will be able to reconstruct 3D breast cancer’s tumours from mammograms effectively.  Several steps were proposed for this research which includes data acquisition, volume reconstruction, andvolume rendering. The expected output from this research is the 3D breast cancer’s tumours model that is generated from correctly registered mammograms. The main purpose of this research is to come up with a 3D reconstruction method that can produce good breast cancer model from mammograms while using minimal computational cost.


2016 ◽  
Vol 24 (13) ◽  
pp. 14564 ◽  
Author(s):  
Michael T. McCann ◽  
Masih Nilchian ◽  
Marco Stampanoni ◽  
Michael Unser

Sign in / Sign up

Export Citation Format

Share Document