Investigation of Melting Current in Glass Tube Fuses

2014 ◽  
Vol 548-549 ◽  
pp. 760-765
Author(s):  
Chitphong Ketthanom ◽  
Chaichana Chaijumrus

This paper presents a study of melting current in the commercial glass tube fuses to determine the duration of melt, maximum melting current and maximum power consumption of the fuse in a blowing circuit. A microcontroller is used as a device to measure and collect the values of current, voltage, and power consumption. In the experiments, the glass tube fuses rated of 0.5 A, 1 A, 2 A, 3 A, 5 A, 10 A, 15 A, and 20 A were used. The experimental results show that the melting time were approximately 0.05 s, 0.07 s, 0.11 s, 0.13 s, 0.18 s, 0.20 s, 0.28 s, and 0.40 s; the maximum of melting current were approximately 0.66 A, 1.17 A, 3.81 A, 13.77 A, 20.80 A, 25.05 A, 26.66 A, and 29.96 A; the maximum of blowing voltage were approximately 12.25 V, 12.25 V, 12.30 V, 12.15 V, 12.10 V, 12.29 V, 12.10 V and 12.20 V; and the maximum of blowing power consumption were approximately 7.53 W, 14.22 W, 45.57 W, 158.49 W, 224.38 W, 242.21 W, 230.63 W and 283.68 W respectively.

2016 ◽  
Vol 78 (6-2) ◽  
Author(s):  
Ammar Hussein Mutlag ◽  
Azah Mohamed ◽  
Hussain Shareef

In photovoltaic (PV) system, maximum power tracking (MPPT) is crucial to improve the system performance. Irradiance and temperature are the two important parameters that affect MPPT. The conventional perturbation and observation (P&O) based MPPT algorithm does not accurately track the PV maximum power point. Therefore, this paper presents an improved P&O algorithm (Im-P&O) based on variable perturbation. The idea behind the Im-P&O algorithm is to produce variable step changes in the reference current/voltage for fast tracking of the PV maximum power point. The Im-P&O based MPPT is designed for the 25 SolarTIFSTF-120P6 PV panels, with a capacity of 3 kW peak. A complete PV system is modeled using the MATLAB/Simulink. Simulation results showed that the Im-P&O based MPPT achieved faster and accurate performance compared with the conventional P&O algorithm.


Author(s):  
Mansour Zegrar ◽  
M’hamed Houari Zerhouni ◽  
Mohamed Tarik Benmessaoud ◽  
Fatima Zohra Zerhouni

In recent years, solar photovoltaic energy is becoming very important in the generation of green electricity. Solar photovoltaic effect directly converts solar radiation into electricity. The output of the photovoltaic module MPV depends on several factors as solar irradiation and cell temperature. A curve tracer is a system used to acquire the PV current-voltage characteristics, in real time, in an efficient manner. The shape of the I-V curve gives useful information about the possible anomalies of a PV device. This paper describes an experimental system developed to measure the current–voltage curve of a MPV under real conditions. The measurement is performed in an automated way. This present paper presents the design, and the construction of I-V simple curve tracer for photovoltaic modules. This device is important for photovoltaic (PV) performance assessment for the measurement, extraction, elaboration and diagnose of entire current-voltage I-V curves for several photovoltaic modules. This system permits to sweep the entire I-V curve, in short time, with different climatic and loads conditions. An experimental test bench is described. This tracer is simple and the experimental results present good performance. Simulation and experimental tests have been carried out. Experimental results presented good performance.


2016 ◽  
Vol 3 (1) ◽  
pp. 9-14 ◽  
Author(s):  
R. Ahiska ◽  
L. Nykyruy ◽  
G. Omer ◽  
G. Mateik

In this study, load characteristics of thermoelectric and photovoltaic solar panels areinvestigated and compared with each other with experiments. Thermoelectric solar panels convertsthe heat generated by sun directly to electricity; while, photovoltaic solar pales converts photonicenergy from sun to electricity. In both types, maximum power can be obtained when the loadresistance is equal to internal resistance. According to experimental results, power generated fromunit surface with thermoelectric panel is 30 times greater than the power generated by photovoltaicpanel. From a panel surface of 1 m2, thermoelectric solar panel has generated 4 kW electric power,while from the same surface, photovoltaic panel has generated 132 W only.


2012 ◽  
Vol 182-183 ◽  
pp. 427-430
Author(s):  
Li Feng Wei ◽  
Liang Cheng ◽  
Xing Man Yang

A adaptive control method of the pulse demagnetizer was presented, Can adjust the strength of the charge current automatically according to the changes of the magnetic content to ensure the constant of the magnetic field.The experimental results have shown that it has the advantages of low power consumption, strong anti-interference capability, stable and reliable operation, long life and good demagnetizing effect, when compared to the conventional demagnetizers.


2016 ◽  
Vol 12 (2) ◽  
pp. 123-136 ◽  
Author(s):  
Ammar Aldair ◽  
Adel Obed ◽  
Ali Halihal

Nowadays, renewable energy is being used increasingly because of the global warming and destruction of the environment. Therefore, the studies are concentrating on gain of maximum power from this energy such as the solar energy. A sun tracker is device which rotates a photovoltaic (PV) panel to the sun to get the maximum power. Disturbances which are originated by passing the clouds are one of great challenges in design of the controller in addition to the losses power due to energy consumption in the motors and lifetime limitation of the sun tracker. In this paper, the neuro-fuzzy controller has been designed and implemented using Field Programmable Gate Array (FPGA) board for dual axis sun tracker based on optical sensors to orient the PV panel by two linear actuators. The experimental results reveal that proposed controller is more robust than fuzzy logic controller and proportional-integral (PI) controller since it has been trained offline using Matlab tool box to overcome those disturbances. The proposed controller can track the sun trajectory effectively, where the experimental results reveal that dual axis sun tracker power can collect 50.6% more daily power than fixed angle panel. Whilst one axis sun tracker power can collect 39.4 % more daily power than fixed angle panel. Hence, dual axis sun tracker can collect 8 % more daily power than one axis sun tracker.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2758 ◽  
Author(s):  
Joseph Gonzales ◽  
Daiki Kurihara ◽  
Tetsuro Maeda ◽  
Masafumi Yamazaki ◽  
Takahito Saruhashi ◽  
...  

Ice accretion is detrimental to numerous industries, including infrastructure, power generation, and aviation applications. Currently, some of the leading de-icing technologies utilize a heating source coupled with a superhydrophobic surface. This superhydrophobic surface reduces the power consumption by the heating element. Further power consumption reduction in these systems can be achieved through an increase in passive heat generation through absorption of solar radiation. In this work, a superhydrophobic surface with increased solar radiation absorption is proposed and characterized. An existing icephobic surface based on a polytetrafluoroethylene (PTFE) microstructure was modified through the addition of graphite microparticles. The proposed surface maintains hydrophobic performance nearly identical to the original superhydrophobic coating as demonstrated by contact and roll-off angles within 2.5% of the original. The proposed graphite coating also has an absorptivity coefficient under exposure to solar radiation 35% greater than typical PTFE-based coatings. The proposed coating was subsequently tested in an icing wind tunnel, and showed an 8.5% and 50% decrease in melting time for rime and glaze ice conditions, respectively.


1979 ◽  
Vol 101 (2) ◽  
pp. 135-138
Author(s):  
Amit Bagchi ◽  
John G. Lenard

Two mathematical models proposed by Avitzur and valid for axially symmetrical square extrusion are tested for their ability to predict the maximum power required in single as well as multiple hole extrusion. Comparison to experimental results obtained using plumber’s lead shows good correlation. The most significant parameter is shown to be the total area reduction. The velocity field in multiple hole extrusion—which by necessity must be nonaxially symmetrical—appears not to affect the power required for extrusion.


Sign in / Sign up

Export Citation Format

Share Document