Preparation of a New Type of Joint Filler and Study on Adhesion Performance

2014 ◽  
Vol 580-583 ◽  
pp. 674-678
Author(s):  
Xiao Wei Li ◽  
Chuan Sha

Aiming at a new joint filler for pitch concrete pavement, processing it in different condition of water, determining the tensile strength through tensile experiment, analyzes the effect of adhesion performance from joint filler in water surrounding; does analysis to the adhesion performance of the recurrent tensile test in identical water surroundings.It evidenced that the new joint filler is much less affected in water surronuding than rubber modified bitumen,which is made by CARFCO inUSA,what meas that the new joint filler is much better than rubber modified bitumen on adhesion performance.

2015 ◽  
Vol 66 (1) ◽  
pp. 147-152 ◽  
Author(s):  
Simona Plavanescu (Mazurchevici) ◽  
Fabrizio Quadrini ◽  
Dumitru Nedelcu

Abstract Petroleum-based plastic materials constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is received particular attention. Our studied material, “Liquid wood” produced from lignin, natural fibres and natural additives, is completely biodegradable in natural environment, in normal conditions. This paper presents the behaviour of Arboform and Arboform reinforced with Aramidic Fibers tensile test analysis. Experimental data show that the tensile strength reached an average value of 15.8 MPa, the modulus of elasticity after tests is 3513.3MPA for Arboform and for the reinforcement the tensile strength is 23.625MPa, the modulus of elasticity after tests is 3411.5MPA, the materials present a brittle behaviour. The high mechanical properties of newly developed material, better than of other ordinary plastics, recommend it as a potential environment-friendly substituent for synthetic plastics, which are present in all fields of activity.


1986 ◽  
Vol 76 ◽  
Author(s):  
John B. Warren

ABSTRACTCollaborative work between Brookhaven and Los Alamos National Laboratories is developing a new type of linear accelerator that uses a high-power, picosecond pulse CO2 laser to irradiate a specialized form of grating with a pitch of 10.6 microns. The electromagnetic field that results can be used to accelerate electrons at field gradients of several GeV/m with potential efficiencies much better than current accelerators. The grating must be conductive to minimize resistive losses, be able to withstand high fields without damage, and requires dimensional tolerances in the sub-micron range. These requirements focus attention on grating material selection, microfabrication methods, and metrological methods used for quality control. At present, several types of gratings have been manufactured by reactive ion etching of fused silica in CHF 3/Ar or etching silicon with KOH/H 2O or ethylenediamine-pyrocatechol solutions. Metrological analysis of the gratings has begun with a Tracor Northern 5700 digital image analyzer.


2007 ◽  
Vol 340-341 ◽  
pp. 525-530 ◽  
Author(s):  
Satoshi Kajino ◽  
Motoo Asakawa

The mechanical and electrical applications of fine wires (D = 0.1 mm) has become more widely spread. In general, it is well known that fine drawn wires have high tensile strength while maintaining ductility. It has been determined that a hardened layer of around 0.04 mm in depth, referred to as the “additional shear strain layer,” is generated beneath the surface layer of the wire, and this additional shear strain layer affected the tensile strength of the fine wire. As an origin of this phenomenon, it was ascertained that the microstructure of surface layer was finer than that of center layer. The purpose of this paper is to investigate the effect of die angle on the microstructure and the tensile strength of the additional shear strain layer. The tensile test was performed as the surface layer was thinned by electro-polishing, and the crystal orientation and the crystal grain were measured via EBSD. As a result, it was ascertained that die angle affected the tensile strength and crystal grain refinement of the additional shear stray layer.


2015 ◽  
Vol 723 ◽  
pp. 701-704
Author(s):  
Jing Li

In this article, corn starch was modified by α-amylase with different hydrolytic time (30, 60, 90 and 120 min) and the effects of modification technology on its properties of viscosity, compound structure and mechanical were studied. The result showed that structure of modified starch was conserved with hydrolytic time increased, whereas tensile strength were increased and viscosity was decreased. The performance of modified starch that hydrolyzed by 30 min was better than others and pinholes were generated in the surface of starch granules


2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


2010 ◽  
Vol 97-101 ◽  
pp. 814-817 ◽  
Author(s):  
Jun Deng

One of the greatest drawbacks to predicting the behaviour of bonded joints has been the lack of reliable data on the mechanical properties of adhesives. In this study, methods for determining mechanical properties of structural adhesive were discussed. The Young’s modulus, Poisson’s ratio and tensile strength of the adhesive were tested by dogbone specimens (bulk form) and butt joint specimens (in situ form). The shear modulus and shear strength were test by V-notched specimens (bulk form) and thick adherend lap-shear (TALS) joint specimens (in situ form). The test results show that the elastic modulus provided by the manufacturer is too low, the dogbone specimen is better than the butt joint specimen to test the tensile strength and elastic modulus and the TALS joint specimen is better than the V-notched specimen to test the shear strength.


2010 ◽  
Vol 452-453 ◽  
pp. 261-264 ◽  
Author(s):  
Kenichi Takemura

In this study, molding condition and tensile properties of jute fiber reinforced composite were examined. PVA resin was used as matrix which is one of the biodegradable resin. Before tensile test, specimens have an offset twist. The tensile test after twist of jute fiber cloth was also conducted. As a result, following results were obtained. In the case of jute fiber cloth, the effect of twist deformation to tensile strength is not great. The reason is thought that the fiber cloth is flexible and easy to deform in this form. In the case of composite, molding time has an effect to the tensile properties. As the molding temperature increases, the tensile strength increases. So, the diffraction intensity was measured. The reason of effect to the strength is thought that the crystallization occurred in the matrix. When the molding temperature is so high, fiber has degradation, and the strength of the composite decreases. As the degree of twist increases, the strength decreases. The reasons are the delamination between layers and debonding between fiber and matrix.


2021 ◽  
Vol 2 (108) ◽  
pp. 75-85
Author(s):  
Q.H. Jebur ◽  
M.J. Jweeg ◽  
M. Al-Waily ◽  
H.Y. Ahmad ◽  
K.K. Resan

Purpose: Rubber is widely used in tires, mechanical parts, and user goods where elasticity is necessary. Some essential features persist unsolved, primarily if they function in excessive mechanical properties. It is required to study elastomeric Rubber's performance, which is operational in high-level dynamic pressure and high tensile strength. These elastomeric aims to increase stress breaking and preserve highly pressurised tensile strength. Design/methodology/approach: The effects of carbon black polymer matrix on the tensile feature of different Rubber have been numerically investigated in this research. Rubber's material characteristics properties were measured using three different percentages (80%, 90%and 100%) of carbon black filler parts per Hundreds Rubber (pphr). Findings: This study found that the tensile strength and elongation are strengthened as the carbon black filler proportion increases by 30%. Practical implications: This research study experimental tests for Rubber within four hyperelastic models: Ogden's Model, Mooney-Rivlin Model, Neo Hooke Model, Arruda- Boyce Model obtain the parameters for the simulation of the material response using the finite element method (FEM) for comparison purposes. These four models have been extensively used in research within Rubber. The hyperelastic models have been utilised to predict the tensile test curves—the accurate description and prediction of elastomer rubber models. For four models, elastomeric material tensile data were used in the FEA package of Abaqus. The relative percentage error was calculated when predicting fitness in selecting the appropriate model—the accurate description and prediction of elastomer rubber models. For four models, elastomeric material tensile data were used in the FEA package of Abaqus. The relative percentage error was calculated when predicting fitness in selecting the appropriate model. Numerical Ogden model results have shown that the relative fitness error was the case with large strains are from 1% to 2.04%. Originality/value: In contrast, other models estimate parameters with fitting errors from 2.3% to 49.45%. The four hyperelastic models were tensile test simulations conducted to verify the efficacy of the tensile test. The results show that experimental data for the uniaxial test hyperelastic behaviour can be regenerated effectively as experiments. Ultimately, it was found that Ogden's Model demonstrates better alignment with the test data than other models.


Sign in / Sign up

Export Citation Format

Share Document