A Review of Research Development of Ventilated Double-Skin Facade

2014 ◽  
Vol 587-589 ◽  
pp. 709-713
Author(s):  
Xin Feng ◽  
Hua Yang ◽  
Xi Yang Feng ◽  
Feng Yun Jin ◽  
Guo Qiang Xia

Demands for the building energy conservation, thermal and visual comfort make the ventilated double-skin facade (DSF) more attractive and more popular in commercial buildings. This paper reviews the recent research development of ventilated double-skin facade in China. The velocity and temperature distribution in the double-skin facade (DSF) are reviewed, together with the effects of glass types, channel width, intensity of solar radiation and shading methods on the heat transfer of ventilated double-skin facade (DSF). This paper also describes the effect of the different combinations of glass, blinds settings, ventilation rate and the channel width, intensity of solar radiation and shading. Furthermore, the methods to improve the energy saving of ventilated double-skin facade (DSF) are also reviewed.

2014 ◽  
Vol 694 ◽  
pp. 256-259
Author(s):  
Xin Zhan ◽  
Hua Yang ◽  
Feng Yun Jin

Airflow and heat transfer simulation was conducted for a double-skin façade (DSF) system equipped with shading devices in the cavity, using computational fluid dynamics (CFD) with RNG turbulence model and PISO algorithm, for five conditions of slat angles (θ=0°, 30°, 45°, 60°, 90°). The present study indicates that the presence of shading devices influences the temperatures, the ventilation rate and the air distribution in the DSF system. Besides, the different angles will make different influences.


2018 ◽  
Vol 240 ◽  
pp. 04004 ◽  
Author(s):  
Marek Jaszczur ◽  
Qusay Hassan ◽  
Janusz Teneta ◽  
Ewelina Majewska ◽  
Marcin Zych

The operating temperature of the photovoltaic module is an important issue because it is directly linked with system efficiency. The objective of this work is to evaluate temperature distribution in the photovoltaic module under different environmental conditions. The results shown that photovoltaic module operating temperature depends not only on the ambient temperature or solar radiation dependent but also depends on wind speed and wind direction. It is presented that the mounting conditions which are not taken into consideration by most of the literature models also play a significant role in heat transfer. Depends on mounting type an increase in module operating temperature in the range 10-15oC was observed which cause further PV system efficiency decrease of about 3.8-6.5 %.


2012 ◽  
Vol 204-208 ◽  
pp. 2236-2239 ◽  
Author(s):  
Bo Chen ◽  
Wei Hua Guo ◽  
Chun Fang Song ◽  
Kai Kai Lu

Bridge tower, time-varying temperature field, heat transfer analysis, finite element model. Abstract. Long span suspension bridges are subjected to daily, seasonal and yearly environmental thermal effects induced by solar radiation and ambient air temperature. This paper aims to investigate the temperature distribution of a tower of a long span suspension bridge. Two-dimensional heat transfer models are utilized to determine the time-dependent temperature distribution of the bridge tower of the bridge. The solar radiation model is utilized to examine the time-varying temperature distribution. Finite element models are constructed for the bridge tower to compute the temperature distribution. The numerical models can successfully predict the structural temperature field at different time. The methodology employed in the paper can be applied to other long-span bridges as well.


2013 ◽  
Vol 448-453 ◽  
pp. 1537-1541 ◽  
Author(s):  
Xiao Wei Xu ◽  
Ya Xin Su

The natural ventilation in a novel built-in photovoltaic-Trombe wall (BiPV-TW) was numerically simulated by CFD method. The effect of solar radiation and channel width on the airflow pattern and ventilation rate was analyzed. Results showed that the solar radiation and channel width influenced the ventilation rate remarkably. As the solar radiation increased, the ventilation rate increased. As the channel width increased from 0.1m to 0.4m, the ventilation rate monotonously increased. However, when the channel width exceeded 0.5m, the reverse flow was formed in the tope zone and the ventilation rate decreased. A maximum air volume flow rate was achieved when the channel width was approximately equal to 0.4m in a 3m tall model.


2010 ◽  
Vol 44-47 ◽  
pp. 158-162
Author(s):  
Bo Chen ◽  
Jin Zheng ◽  
Jian Ping Wang

The analysis of time-varying temperature field of a composite concrete-steel deck plate under strong solar radiation is carried out in this study. By assuming the temperature distribution along the bridge longitudinal direction is basically constant, one typical segment of the deck plate is investigated. Two-dimensional heat transfer models are utilized to determine the time-dependent temperature distribution of deck plate, deck trough and deck pavement of the bridge. A modified solar radiation model is utilized to predict the variation of solar radiation in a whole day. A thermodynamic model is established and a transient heat transfer analysis is conducted to predict the time-varying temperature distribution of the deck plate at different time. The measured ambient temperature data are used as thermal boundary conditions during the numerical analysis. The made observations demonstrate that the simulated temperature variation of the deck plate based on the modified solar radiation model agrees well with measurement results, as compared with those obtained from the traditional solar radiation model..


Author(s):  
Jens Jedamski ◽  
Lars Amsbeck ◽  
Reiner Buck ◽  
Raphael Couturier ◽  
Peter Heller ◽  
...  

In solar tower plants absorber tubes are the main components of various solar receivers, e.g. steam receivers, salt receivers, pressurized air receivers. The solar radiation on the absorber tube causes an inhomogeneous temperature distribution because most of the solar radiation along the tube circumference is one-sided. The resulting internal stresses of the tube and the maximum fluid temperature decrease the lifetime significantly. Within the projects SOLHYCO and FUTUR a profiled multilayer tube (PML) is currently under development in order to reduce this problem. It consists of three metallic layers: a high temperature nickel-based alloy at the outer side, a copper layer as intermediate layer and another high temperature nickel-based alloy at the inner side of the tube. The outer layer provides the structural strength while the copper is used to conduct the heat from the irradiated side to the opposite side. The inner layer protects the copper from corrosion and oxidation at high temperatures. In addition, a wire coil is inserted (profiled) to increase the heat transfer on the inside. The PML is manufactured in a hydro-forming process by deforming the tube composite with water under high pressure. To demonstrate the performance and to determine the heat transfer, the pressure loss and the temperature distribution, a test loop was built to simulate the different loads under laboratory conditions. The thermo hydraulic measurements and finite element calculations show that the temperature gradient and the maximum temperature can be reduced significantly. Based on these studies the advantages of the PML in comparison to common tubes will be presented as well as several possibilities for future improvements.


2014 ◽  
Vol 580-583 ◽  
pp. 2415-2420 ◽  
Author(s):  
Cun Hui ◽  
Yuan Qing Wang ◽  
Bin Wang ◽  
Wei Tao ◽  
Sheng Lin Zheng

Simulation and analysis of heat transfer process in internal recycle double skin facades (DSF) of the established standard model were carried out by computational fluid dynamics (CFD). Comprehensive heat transfer coefficient under the condition of different ventilation rate of DSF with and without blinds was studied. The results show: the increase of the ventilation rate can not only improve the comprehensive heat transfer coefficient, but also improve the temperature of inner surface of the inner curtain wall. Double skin facades can improve the comfort level of the indoor environment, reduce the energy loss of the palisade structure and reduce energy consumption.


2015 ◽  
Vol 5 (2) ◽  
Author(s):  
DRAGANA TEMELJKOVSKI

The roof, as a part of the building envelope with the thermal performance that’s a major requirement for guaranteeing a comfortable and hygienic interior climate, provides protection from thermal damage incurred by the sun. To improve this protection ability, the use of a ventilated roof can be considered, which has a ventilation layer known as a cavity, beneath the roof cover panel. Based on the proposed mechanism of heat transfer and the influence of such factors as cavity ventilation, the slope of the roof, intensity of solar radiation, the size and shape of the cavity, and panel profiles, airflow and temperature distribution are analyzed in the cavity, in an effort to improve the cooling effect of ventilation in the cavity of the roof. In this study, the influence of these elements on airflow is studied. Key words: temperature distribution, cooling effect, air flow, thermal comfort, ventilation channel.


2012 ◽  
Vol 204-208 ◽  
pp. 4368-4371
Author(s):  
Jun Ping Fu ◽  
Zhi Hui Liang ◽  
Yu Fang Tian ◽  
Jia Ci Li ◽  
Yan Qiu Feng

When exterior wall adopts solar chimney thermal channel, natural ventilation comes into being in the thermal channel, which plays the role of reducing the heat indoor. In this article, we use FLUENT to explore the heat transfer and flow quality of the solar chimney thermal channel in Changsha area in the summer. The research mainly studies how different thermal channel widths, inlet and outlet vent heighst and solar radiation intensities can impact on ventilation effect and further concludes the rules of thermal channel flow field and ventilation rate changing of the solar chimney.


2019 ◽  
pp. 53-65
Author(s):  
Renata Domingos ◽  
Emeli Guarda ◽  
Elaise Gabriel ◽  
João Sanches

In the last decades, many studies have shown ample evidence that the existence of trees and vegetation around buildings can contribute to reduce the demand for energy by cooling and heating. The use of green areas in the urban environment as an effective strategy in reducing the cooling load of buildings has attracted much attention, though there is a lack of quantitative actions to apply the general idea to a specific building or location. Due to the large-scale construction of high buildings, large amounts of solar radiation are reflected and stored in the canyons of the streets. This causes higher air temperature and surface temperature in city areas compared to the rural environment and, consequently, deteriorates the urban heat island effect. The constant high temperatures lead to more air conditioning demand time, which results in a significant increase in building energy consumption. In general, the shade of the trees reduces the building energy demand for air conditioning, reducing solar radiation on the walls and roofs. The increase of urban green spaces has been extensively accepted as effective in mitigating the effects of heat island and reducing energy use in buildings. However, by influencing temperatures, especially extreme, it is likely that trees also affect human health, an important economic variable of interest. Since human behavior has a major influence on maintaining environmental quality, today's urban problems such as air and water pollution, floods, excessive noise, cause serious damage to the physical and mental health of the population. By minimizing these problems, vegetation (especially trees) is generally known to provide a range of ecosystem services such as rainwater reduction, air pollution mitigation, noise reduction, etc. This study focuses on the functions of temperature regulation, improvement of external thermal comfort and cooling energy reduction, so it aims to evaluate the influence of trees on the energy consumption of a house in the mid-western Brazil, located at latitude 15 ° S, in the center of South America. The methodology adopted was computer simulation, analyzing two scenarios that deal with issues such as the influence of vegetation and tree shade on the energy consumption of a building. In this way, the methodological procedures were divided into three stages: climatic contextualization of the study region; definition of a basic dwelling, of the thermophysical properties; computational simulation for quantification of energy consumption for the four facade orientations. The results show that the façades orientated to north, east and south, without the insertion of arboreal shading, obtained higher values of annual energy consumption. With the adoption of shading, the facades obtained a consumption reduction of around 7,4%. It is concluded that shading vegetation can bring significant climatic contribution to the interior of built environments and, consequently, reduction in energy consumption, promoting improvements in the thermal comfort conditions of users.


Sign in / Sign up

Export Citation Format

Share Document