Thermal Analysis of Ceramic Coated Aluminium Piston with Slots

2014 ◽  
Vol 592-594 ◽  
pp. 786-790
Author(s):  
M.R. Chitthaarth ◽  
K. Manivannan

The main aim is to control thermal expansion in aluminium piston at high working condition. A plasma sprayed ceramic coating (TBC) is applied on the piston crown as a top coat and NiCrAl is applied as the middle layer as bond coat to improve the addition strength between the top coat and the metal subtract layer as AlSi alloy; we introduce a thermal slot on the piston shrink to regulate the heat flow in piston and make it cooler. We analyse the piston with these two implementations to determine the thermal analysis of the piston. The results can be shown in the various comparisons of coating thickness of top coat with thermal slots on the piston shrink. Increase in coating thickness reduces the stress in the coatings. It is observed that 85°C increase in 0.8mm coat than the ordinary piston.

Author(s):  
F. Kroupa ◽  
K. Neufuss ◽  
H. Lauschmann ◽  
A. Materna ◽  
V. Oliva

Abstract The theory of residual stresses and of residual bending of plates with relatively thick sprayed coatings is summarized and some methods to minimize the bending are proposed. The particular case of an aluminium alloy substrate with a relatively thick plasma sprayed ceramic coating, with a large difference of thermal expansion coefficients, is discussed.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1268
Author(s):  
Yun Wang ◽  
Weichao Wan ◽  
Junhong Mao ◽  
Lihui Tian ◽  
Ruitao Li

In this study, atmospheric plasma spray was employed to deposit TiO2–SiAlON ceramic coating on 316 stainless steel. The phases and microstructure of the ceramic coating were investigated. Additionally, comparative studies on the tribological performances of the substrate and the ceramic coating, under both dry and starved lubrication conditions, were carried out. The SiAlON phase was preserved, while partial TiO2 anatase was transformed to rutile phase. The wear rate of the coating was roughly 1/3 of that of the substrate under both conditions. The wear mechanisms of the ceramic coating were surface fracture and abrasive wear in both cases, and the coating under starved lubrication underwent less abrasion. The pores in the coating served as micro-reservoirs, forming an oil layer on the mating surface, and improving tribological properties during sliding.


2005 ◽  
Vol 482 ◽  
pp. 223-226
Author(s):  
Luboš Náhlík ◽  
Zdeněk Knésl ◽  
F. Kroupa

Plasma-sprayed ceramic coatings contain a high density of intrasplat microcracks which are responsible for small Young’s moduli and low fracture toughness. The extension of an initial surface crack in the direction to the interface, where the crack is repelled by the metal substrate with higher Young’s modulus, is studied using the methods of fracture mechanics. It is shown that high tensile stresses induced by the crack in the interface can lead to a local decohesion along the interface so that the crack can deviate into the interface.


2008 ◽  
Vol 591-593 ◽  
pp. 30-35
Author(s):  
Danieli A.P. Reis ◽  
Carlos de Moura Neto ◽  
Antônio Augusto Couto ◽  
Cosme Roberto Moreira Silva ◽  
Francisco Piorino Neto ◽  
...  

Thermomechanical and electrical properties of zirconia-based ceramics have led to a wide range of advanced and engineering ceramic applications like solid electrolyte in oxygen sensors, fuel cells and furnace elements and its low thermal conductivity has allowed its use for thermal barrier coatings for aerospace engine components. A comparison between CoNiCrAlY bond coat and zirconia plasma sprayed coatings on creep tests of the Ti-6Al-4V alloy was studied. The material used was commercial Ti-6Al-4V alloy. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. Constant load creep tests were conducted on a standard creep machine in air on coated samples, at stress levels of 520 MPa at 500°C to evaluate the oxidation protection on creep of the Ti-6Al-4V alloy. Results indicate that the creep resistance of the ceramic coating was greater than metallic coating.


Author(s):  
B. Antoszewski ◽  
W. Zorawski

Abstract This paper deals with findings of experiments concerning the scuffing phenomenon in case the frictional pair is embodying an element with a thermally sprayed ceramic coating. The progress of building up of seizure is related and evaluated for a set of ceramic coatings embodying a diversity of granulations of Al2O3TiO2 and Cr2O3 plasma sprayed on steel, the IHI8N9T steel and carbon-graphite when tested on a roller-block machine. The greatest antiscuffing resistance was recorded for Cr2O3/carbon-graphite pair. An analysis of regression approximating friction force was carried through.


Author(s):  
Ershad Mortazavian ◽  
Zhiyong Wang ◽  
Hualiang Teng

The complicated steel wheel and rail interaction on curve causes side wear on rail head. Thus, the cost of maintenance for the track on curve is significantly higher than that for track on a tangent. The objective of this research is to develop 3D printing technology for repairing the side wear. In this paper, the study examines induced residual thermal stresses on a rail during the cooling down process after 3D printing procedure using the coupled finite volume and finite element method for thermal and mechanical analysis respectively. The interface of the railhead and additive materials should conserve high stresses to prevent any crack initiation. Otherwise, the additive layer would likely shear off the rail due to crack propagation at the rail/additive interface. In the numerical analysis, a cut of 75-lb ASCE (American Society of Civil Engineers) worn rail is used as a specimen, for which a three-dimensional model is developed. The applied residual stresses, as a result of temperature gradient and thermal expansion coefficient mismatch between additive and rail materials, are investigated. At the beginning, the worn rail is at room temperature while the additive part is at a high initial temperature. Then, additive materials start to flow thermal energy into the worn rail and the ambient. The thermal distribution results from thermal analysis are then employed as thermal loads in the mechanical analysis to determine the von-Mises stress distribution as the decisive component. Then, the effect of preheating on residual stress distribution is studied. In this way, the thermo-mechanical analysis is repeated with an increase in railhead’s initial temperature. In thermal analysis, the temperature contours at different time steps for both the non-preheated and preheated cases indicate that preheating presents remarkably lower temperature gradient between rail and additive part and also represents a more gradual cooling down process to allow enough time for thermal expansion mismatch alignment. In mechanical analysis, the transversal von-Mises stress distribution at rail/additive interface is developed for all cases for comparison purposes. It is shown that preheating is a key factor to significantly reduce residual stresses by about 40% at all points along transversal direction of interface.


2017 ◽  
Vol 17 (11) ◽  
pp. 8598-8602
Author(s):  
Ki-Hwan Kim ◽  
Song Hoon ◽  
Jong-Hwan Kim ◽  
Ki-Won Hong ◽  
Jeong-Yong Park

Sign in / Sign up

Export Citation Format

Share Document