Influence of Surface Microstructure of Ceramic Coatings on the Initiation and Development of Scuffing Phenomena

Author(s):  
B. Antoszewski ◽  
W. Zorawski

Abstract This paper deals with findings of experiments concerning the scuffing phenomenon in case the frictional pair is embodying an element with a thermally sprayed ceramic coating. The progress of building up of seizure is related and evaluated for a set of ceramic coatings embodying a diversity of granulations of Al2O3TiO2 and Cr2O3 plasma sprayed on steel, the IHI8N9T steel and carbon-graphite when tested on a roller-block machine. The greatest antiscuffing resistance was recorded for Cr2O3/carbon-graphite pair. An analysis of regression approximating friction force was carried through.

2021 ◽  
Author(s):  
Tuan Nguyen Van ◽  
Tuan Anh Nguyen ◽  
Phuong Nguyen Thi ◽  
Ha Pham Thi ◽  
Ly Pham Thi ◽  
...  

Abstract Thermally sprayed Al2O3-TiO2 ceramic coatings provide exceptional hardness and corrosion and wear resistance, but the high velocities at which they are applied result in an inherently porous structure that requires some type of remediation. This study evaluates the effectiveness of ultrasonic aluminum phosphate sealing treatments on plasma sprayed Al2O3-40TiO2 ceramic coatings. The sealants were applied with and without ultrasonication (20-40 kHz) and were assessed using SEM/EDX analysis, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). Test data indicate that optimum sealing, corresponding to the highest values of corrosion protection and erosion resistance, are achieved under ultrasonication at 30 kHz for 5 hours.


2005 ◽  
Vol 482 ◽  
pp. 223-226
Author(s):  
Luboš Náhlík ◽  
Zdeněk Knésl ◽  
F. Kroupa

Plasma-sprayed ceramic coatings contain a high density of intrasplat microcracks which are responsible for small Young’s moduli and low fracture toughness. The extension of an initial surface crack in the direction to the interface, where the crack is repelled by the metal substrate with higher Young’s modulus, is studied using the methods of fracture mechanics. It is shown that high tensile stresses induced by the crack in the interface can lead to a local decohesion along the interface so that the crack can deviate into the interface.


2014 ◽  
Vol 978 ◽  
pp. 40-43
Author(s):  
Dong Sheng Wang ◽  
Guang Qu ◽  
Jin Lan Su

Conventional and nanosturctured Al2O3–13 wt% TiO2ceramic coatings were deposited by plasma spraying on TiAl alloy surface. Laser remelting experiment on as-sprayed coatings was carried out and the influences of laser remelting on microstructure and thermal barrier effect of the coating were researched. The results show that the as-sprayed conventional coating has a typical plasma-sprayed lamellar-like structure, while the nanostructured coating consisted of both fully melted regions and partially melted regions. The laser-remelted conventional coating exhibits column-like crystals which grew along the direction of the heat current, while the nanostructured coating composed of fine equiaxed grains with some remained nanoparticles. The nanostructured ceramic coating has higher thermal barrier effect than the conventional ceramic coating does. The thermal barrier effect of the as-sprayed coatings decreases after laser remelting.


2013 ◽  
Vol 321-324 ◽  
pp. 318-323
Author(s):  
Gao Xu Tan ◽  
Tong Wang ◽  
En Bing Bi

Al2O3-13% TiO2 based nanostructured ceramic coatings were prepared on the surface of NiCrAl alloy by Plasma Spraying technology. Compared to the micron ceramic coating (MCC), the average value of hardness of nanostructured ceramic coating (NCC) was much higher than that of MCC, and the NCC presents typical bi-modal distribution. The Weibull distribution of both coatings exhibited apparently dispersible, but NCCs was quite well-distributed. The relationship between microhardness and microstructure were analyzed through SEM, XRD and TEM. The results indicate that the microcracks of NCC are fine and the size of particles is small. The structure of NCC coatings contained more α-Al2O3 and TiO2 and less γ-Al2O3 than that of MCC coatings. According to TEM analysis, it can be considered that the grain refinement, toughening of microcracks, and the dispersive refinement of Al2O3 nanoparticles on Al2O3-TiO2 matrix are main mechanisms to improve the mechanical properties of NCC.


Author(s):  
R. P. Tolokan ◽  
J. B. Brady ◽  
G. P. Jarrabet

The durability of thermally shocked high tempererature ceramic coatings on metal substrates can be dramatically improved using a fiber metal strain isolator between ceramic and metal. The fiber metal strain isolator is a compliant, porous and low modulus material which yields to control the stress on the ceramic coating during thermal cycling. Plasma sprayed strain isolated ceramic coatings .060” (1.5 mm) thick have shown excellent durability in thermal shock testing. The strain isolated ceramic coating is an excellent thermal barrier since both the ceramic and fiber metal are good insulators. Applications include ceramic thermal barrier coatings for gas turbine engine seals and turbine components, combustors, MHD electrodes, and internal combustion engine insulation.


2020 ◽  
Vol 36 (2) ◽  
pp. 183-196 ◽  
Author(s):  
V. Guski ◽  
W. Verestek ◽  
E. Oterkus ◽  
S. Schmauder

ABSTRACTThe present study deploys a continuum mechanics approach called peridynamics to investigate the damage behaviour of a 2D microstructure, which was taken from a plasma sprayed ceramic coating used in solid oxide fuel cell (SOFC) sealing systems. At the beginning, two benchmark cases, namely, plate with a hole as well as plate with a single edge notch, are considered. The results are compared to an analytical solution and a very good agreement is obtained. Based on these findings, a microstructural model from a plasma sprayed ceramic coating of SOFC sealing systems is investigated. These micromechanical simulations show that structural defects influence the crack initiation as well as the crack propagation during interconnecting the defects. Typical crack mechanisms, such as crack deflection, crack shielding or multiple cracking, are observed. Additionally, an anisotropy of the effective mechanical properties is observed in this heterogeneous material, which is well known for plasma sprayed materials.


2013 ◽  
Vol 575-576 ◽  
pp. 142-146
Author(s):  
Er Lin Lu ◽  
Yan Chen ◽  
Sheng Lu

NiCoCrAlY/AT13 composite coating was prepared by plasma spraying technology on AZ91D substrate and sealed with three different methods. The corrosion resistances of the composite ceramic coatings with and without sealing were evaluated by immersion and electrochemical tests The results show that NiCoCrAlY/AT13 composite ceramic coating represents better corrosion property than single AT13 ceramic coating. The corrosion resistances of NiCoCrAlY/AT13 composite coatings with sealing are superior to that of unsealing coating. Among three sealed coatings, both coatings sealed with paraffin and varnish exhibit better corrosion resistance with corrosion rate of 0.130 g/(m2·h), 0.204 g/(m2·h), and Icorrof 1.754E-7 (A·cm-2), 9.493E-8 (A·cm-2) respectively, while the coating with epoxy resin sealing is relatively the worst one with corrosion rate of 0.744 g/(m2·h) and Icorrof 1.650E-7 (A·cm-2).


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 474
Author(s):  
Fuzhu Li ◽  
Shengnan Sun ◽  
Yong Xu ◽  
Lihui Tian ◽  
Yun Wang ◽  
...  

MoAlB ceramic coatings were prepared on a 316 steel surface by atmospheric plasma spraying with different arc power levels. The phase composition, microstructure and wear resistance of coatings against GCr15 and Si3N4 counterparts were studied. The MoAlB ceramic decomposed and was oxidized to form MoB and Al2O3 during plasma spraying. With the increase of the arc power, MoAlB experienced more decomposition, but the coatings became denser. When the arc power increased from 30 to 36 kW, the wear rates of coatings against GCr15 and Si3N4 balls reduced by 91% and 78%, respectively. The characterization of wear tracks shows that when against GCr15 counterparts, the main wear mechanisms are abrasive and adhesive wear, and when against Si3N4 counterparts, fatigue and abrasive wear are dominant. The refinement of wear resistance by increasing arc power can be attributed to the improvement of density and adhesive strength among splats.


2008 ◽  
Vol 375-376 ◽  
pp. 348-352 ◽  
Author(s):  
Zong Jun Tian ◽  
Li Da Shen ◽  
Yin Hui Huang ◽  
Guo Ran Hua

This paper describes an investigation of nano-SiC reinforced ceramic coating, which has included NiCrAl and Al2O3+13wt%TiO2 coatings pre-produced by atmosphere plasma spraying, implemented by laser sintering. Commercial NiCrAl powders were plasma sprayed onto 45 steel substrates to produce a bond coating with thickness of ~100μm. The Al2O3-TiO2 based coating with ~500μm thickness was then plasma sprayed on top of the NiCrAl bond coating. With CO2 laser, nano-SiC powders were laser sintered on Al2O3-TiO2 based coatings. The microstructure and chemical composition of the modified based coatings were analyzed by such detection devices as scanning electronic microscope (SEM) and x-ray diffraction (XRD). The results show that the size of SiC grains has no obvious growth. In addition, due to the nanostructured SiC phase and laser remelting, the modified coatings exhibited better abrasion resistance than those unmodified samples.


Author(s):  
K.R. Subramanian ◽  
A.H. King ◽  
H. Herman

Plasma spraying is a technique which is used to apply coatings to metallic substrates for a variety of purposes, including hardfacing, corrosion resistance and thermal barrier applications. Almost all of the applications of this somewhat esoteric fabrication technique involve materials in hostile environments and the integrity of the coatings is of paramount importance: the effects of process variables on such properties as adhesive strength, cohesive strength and hardness of the substrate/coating system, however, are poorly understood.Briefly, the plasma spraying process involves forming a hot plasma jet with a maximum flame temperature of approximately 20,000K and a gas velocity of about 40m/s. Into this jet the coating material is injected, in powder form, so it is heated and projected at the substrate surface. Relatively thick metallic or ceramic coatings may be speedily built up using this technique.


Sign in / Sign up

Export Citation Format

Share Document