The Dependence of Carrier Distribution on Gate Capacitance of α-IGZO TFTs

2014 ◽  
Vol 598 ◽  
pp. 361-364 ◽  
Author(s):  
Chih Chieh Hsu ◽  
Chien Hsun Wu

The capacitance-voltage (C–V) characteristics of inverted staggered amorphous indium–gallium–zinc-oxide thin film transistors (α-IGZO TFTs) with various dimensions are investigated by physics-based technology computer aided design (TCAD) simulation. For gate bias lower than the threshold voltage of the TFT, the electrons in the channel region are nearly fully depleted. It causes that the total gate capacitance is determined by the overlap region of gate, α-IGZO, and source/drain metals. When the applied gate bias is higher than the threshold voltage, the high electron density channel with density of ~6 × 1017 cm-3 and thickness of ~3-4 nm is observed near the interface of α-IGZO and gate dielectric. It results that the total gate capacitance is dominated by the gate to channel overlap. Quantitative analysis of the carrier distribution and energy band structures are utilized to study the physical mechanism underlying the C–V characteristics of the α-IGZO TFTs.

Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 852 ◽  
Author(s):  
Seungbeom Choi ◽  
Kyung-Tae Kim ◽  
Sung Park ◽  
Yong-Hoon Kim

In this paper, we demonstrate high-mobility inkjet-printed indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) using a solution-processed Sr-doped Al2O3 (SAO) gate dielectric. Particularly, to enhance to the electrical properties of inkjet-printed IGZO TFTs, a linear-type printing pattern was adopted for printing the IGZO channel layer. Compared to dot array printing patterns (4 × 4 and 5 × 5 dot arrays), the linear-type pattern resulted in the formation of a relatively thin and uniform IGZO channel layer. Also, to improve the subthreshold characteristics and low-voltage operation of the device, a high-k and thin (~10 nm) SAO film was used as the gate dielectric layer. Compared to the devices with SiO2 gate dielectric, the inkjet-printed IGZO TFTs with SAO gate dielectric exhibited substantially high field-effect mobility (30.7 cm2/Vs). Moreover, the subthreshold slope and total trap density of states were also significantly reduced to 0.14 V/decade and 8.4 × 1011/cm2·eV, respectively.


2019 ◽  
Vol 954 ◽  
pp. 133-138
Author(s):  
Ao Liu ◽  
Song Bai ◽  
Run Hua Huang ◽  
Tong Tong Yang ◽  
Hao Liu

The mechanism of threshold voltage shift was studied. It is believed that the instability in threshold voltage during gate bias stress is due to capture of electrons by the SiC/gate dielectric interface traps and the gate dielectric near interface traps. New experimental platform was designed and built successfully. When positive stress or negative stress is applied to the gate, the change of threshold voltage occur immediately. After stress removal, the recovery of the threshold voltage occur soon. The change and recovery of threshold voltage are very sensitive to time. In order to get accurate threshold voltage drift data after high-temperature gate bias experiment, test of threshold voltage must be carried out immediately after the experiment.


Sign in / Sign up

Export Citation Format

Share Document