Synchronization Control Scheme for Antenna Pointing Control System Based on Hybrid Linear Actuator

2014 ◽  
Vol 599-601 ◽  
pp. 1077-1080
Author(s):  
Peng Yao ◽  
Gang Liu ◽  
Yan Liu

To overcome the limitations of the independent stacked hybrid actuator with multiple sensors, a new hybrid linear actuator combines the advantages of both technologies: piezo actuator for extremely high accuracy and motorized stage for long travel ranges. A hybrid linear actuator prototype has been developed for testing in our satellite tracking antenna pointing control system. For the maximum absolute positioning accuracy, host positioning controller depends only on one common position sensor for both the coarse and fine positioning at the same time. Synchronization control scheme shows promising results for extremely small steps, high repeatability and good linearity over long travel ranges.

Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 105
Author(s):  
Thinh Huynh ◽  
Minh-Thien Tran ◽  
Dong-Hun Lee ◽  
Soumayya Chakir ◽  
Young-Bok Kim

This paper proposes a new method to control the pose of a camera mounted on a two-axis gimbal system for visual servoing applications. In these applications, the camera should be stable while its line-of-sight points at a target located within the camera’s field of view. One of the most challenging aspects of these systems is the coupling in the gimbal kinematics as well as the imaging geometry. Such factors must be considered in the control system design process to achieve better control performances. The novelty of this study is that the couplings in both mechanism’s kinematics and imaging geometry are decoupled simultaneously by a new technique, so popular control methods can be easily implemented, and good tracking performances are obtained. The proposed control configuration includes a calculation of the gimbal’s desired motion taking into account the coupling influence, and a control law derived by the backstepping procedure. Simulation and experimental studies were conducted, and their results validate the efficiency of the proposed control system. Moreover, comparison studies are conducted between the proposed control scheme, the image-based pointing control, and the decoupled control. This proves the superiority of the proposed approach that requires fewer measurements and results in smoother transient responses.


2012 ◽  
Vol 271-272 ◽  
pp. 1705-1708 ◽  
Author(s):  
Wei Zhang ◽  
Bin Sun ◽  
Bin Li ◽  
Shi Tang

This paper focuses on “A shape” frame’s two-cylinder synchronization control of Remotely Operated Vehicle (ROV) launch and recovery system. First, two-cylinder synchronization control scheme with counterbalance valve and proportional valve is proposed. Second, counterbalance valve model is established, and its supercomponent is generated. Finally, simulation of synchronization control system is performed. After adjusting PID controller parameters, displacements error of two cylinders is controlled in the allowed range.


2014 ◽  
Vol 722 ◽  
pp. 213-216
Author(s):  
Rui Yong Duan ◽  
Ji Ling Yan

Manipulator of multiple degrees of freedom has been widely used in all kinds of rescue and exploring robots. This paper regard a kind of 6 DOF manipulator controller as the design object.The data acquisition for WDD35D4 sensors is carried by the C8051F020 microcontroller and sent through a wireless transmitter NRF905 after encrypted.Then the wireless transmitter NRF905 of the manipulator receives decryption. Through data processing and the steering gear adjustment, the angle of linear potentiometer corresponds to the angle of steering by 1-1. Then it drives the manipulator to work out and simulate the same motion of mechanical arm controller, and make real-time synchronization control.


2021 ◽  
Vol 11 (14) ◽  
pp. 6299
Author(s):  
Xiong Xie ◽  
Tao Sheng ◽  
Liang He

The distributed attitude synchronization control problem for spacecraft formation flying subject to limited energy and computational resources is addressed based on event-triggered mechanism. Firstly, a distributed event-driven controller is designed to achieve attitude coordination with the limitation of energy and computing resources. Under the proposed control strategy, the controller is only updated at the event triggering instants, which effectively reduces the update frequency. Subsequently, an event-triggered strategy is developed to further decrease energy consumption and the amount of computation. The proposed event-triggered function only requires the latest state information about its neighbors, implying that the trigger threshold does not need to be calculated continuously. It is shown that the triggering interval between two successive events is strictly positive, showing that the control system has no Zeno phenomenon. Moreover, the update frequency of the proposed controller can be reduced by more than 90% compared to the update frequency of the corresponding time-driven controller with an update frequency of 10 Hz by choosing appropriate control parameters and the control system can still achieve high-precision convergence. Finally, the effectiveness of the constructed control scheme is verified by numerical simulations.


Author(s):  
Shihuan Li ◽  
Lei Wang

For L4 and above autonomous driving levels, the automatic control system has been redundantly designed, and a new steering control method based on brake has been proposed; a new dual-track model has been established through multiple driving tests. The axle part of the model was improved, the accuracy of the transfer function of the model was verified again through acceleration-slide tests; a controller based on interference measurement was designed on the basis of the model, and the relationships between the controller parameters was discussed. Through the linearization of the controller, the robustness of uncertain automobile parameters is discussed; the control scheme is tested and verified through group driving test, and the results prove that the accuracy and precision of the controller meet the requirements, the robustness stability is good. Moreover, the predicted value of the model fits well with the actual observation value, the proposal of this method provides a new idea for avoiding car out of control.


2013 ◽  
Vol 706-708 ◽  
pp. 716-719
Author(s):  
Jian Chu ◽  
Gang Wang

This paper mainly introduced to the PLC as the core of stainless steel composite plate electric control part of the design. The system uses the converter +PLC+ man-machine interface, as the major part of roll welding machine control, because of the use of the PLC, so that the system can improve the automatic level, electrical components is reduced, reduce failure rate, improve the reliability of equipment operation. Based on the current control and speed control, so that the welding quality and welding speed has been greatly improved. In the article, mainly from the production process, and the control system hardware and software design, and the control scheme to introduce several aspects.


2013 ◽  
Vol 341-342 ◽  
pp. 679-683
Author(s):  
Jian Zhao Cao ◽  
Dian Hua Zhang

In order to solve the time synchronization problem in tandem hot strip line, the traditional algorithm of time synchronization was analyzed, and the server-client mode was compared with the broadcast mode using multithread technology, then the present paper improved the broadcast mode to improve its precision. The new method can estimate total delay including clock offset and network transmission time. A simple, easy and little loading time synchronization method was designed for the distributed process control system of tandem hot strip line. The new method was applied in domestic some tandem hot strip line successfully which showed that it could meet the demands of process control system with little expenses, simple structure and high precision.


Sign in / Sign up

Export Citation Format

Share Document