Effect of Weight Percentage on Mechanical Properties of Boron Carbide Particulate Reinforced Aluminium Matrix Composites

2014 ◽  
Vol 612 ◽  
pp. 151-155 ◽  
Author(s):  
S Dhinakaran ◽  
T.V. Moorthy

Aluminium matrix composites (AMCs) play a vital role as advanced engineering materials due to their excellent mechanical properties like light weight, strength, wear resistance, toughness. This work focuses on the fabrication of aluminium (AA6061) matrix composites reinforced with 3%, 6% and 9% B4C particle of 104μm using stir casting method. The wettability of B4C particles in the matrix has been improved by adding K2TiF6flux in to the molten metal. The microstructure and mechanical properties of the fabricated AMCs are analyzed. Uniform distribution of B4C particle in the matrix was confirmed using scanning electron microscope (SEM) images. It was found that the tensile strength and hardness of the fabricated AMCs increases with increased B4C particle content.

2019 ◽  
Vol 821 ◽  
pp. 81-88 ◽  
Author(s):  
Samuel Olukayode Akinwamide ◽  
Serge Mudinga Lemika ◽  
Babatunde J. Obadele ◽  
Ojo Jeremiah Akinribide ◽  
Oluwasegun Eso Falodun ◽  
...  

The limitations of aluminium in most engineering applications has led to the development of aluminium matrix composites with improved microstructural and mechanical properties. Nanoindentation techniques was used in assessing the mechanical properties of fabricated aluminium matrix composites with ferrotitanium and silicon carbide as reinforcements. Results from nanoindentation experiments shows the dependence of modulus of elasticity, microhardness and contact depth on the dispersion of ferrotitanium and silicon carbide reinforcements within the aluminium matrix. Highest nanohardness value was observed in composite with 7 wt. % silicon carbide, while the lowest elastic modulus was recorded in as-cast aluminium. Further analysis of specimens confirmed a decrease in maximum penetration depth with respective increase in the addition of silicon carbide reinforcements in the fabricated composites.


2017 ◽  
Vol 898 ◽  
pp. 971-983 ◽  
Author(s):  
Hai Bao Wu ◽  
De Fu Li ◽  
Xing Gang Li ◽  
Guo Qiang Chai

Particulate Reinforced Aluminium Matrix Composites (PRAMCs) have been widely applied in military and civilian areas such as aviation, aerospace, advanced weapon applications and electrical industries due to their good mechanical properties at elevated temperature, low thermal expansion coefficient, excellent wear resistance and low production cost. The main preparation techniques of the PRAMCs include stir casting, powder metallurgy, pressureless infiltration and spray deposition. However, the problems such as low densification and particle cluster encountered in these techniques often reduce the material properties. It has reported that the homogeneity of the distribution of particulate reinforcements in metal matrix can be improved by plastic processing, thus enhancing the material densification. This paper summarized recent progress in the plastic processing methods of the PRAMCs, with an emphasis on the spinning technique. The effects of various process parameters on the material properties were discussed in detail. A summary of research progress on the numerical simulation of plastic processing of the PRAMCs was presented. In the end, an outlook was given on the prospect of the PRAMCs’ development.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Gebre Fenta Aynalem

Processing methods of aluminium matrix composites (AMCs) have been changing continuously considering the ease of manufacturing and the final quality of the desired composite. The most well-known processing techniques of AMCs such as stir casting, powder metallurgy, spark plasma sintering, squeeze casting, friction stir processing, liquid metal infiltration, spray codeposition, and reactive in situ techniques have elaborated here with their respective distinguishing features and mechanical properties of the fabricated composites. Moreover, this review paper contains the factors affecting the mechanical properties of AMCs as well as their clear justifications. The mechanical properties of AMCs are highly affected by the type of processing method, process parameters, and type, size, and composition of the reinforcing material. Concerning this, the mechanical properties of aluminium and its alloys are highly improved by adding a variety of reinforcing materials in a broader spectrum.


The present work was planned to evaluate the mechanical properties of alumina reinforced aluminium alloy such hardness and compression behavior of al2o3 /aa7075 alloy metal matrix composites. Both, experimental and finite element analyses were carried out to establish tensile behaviour of the composites with different weight percentage of al2o3 fabricated by the stir casting process. The results concluded that addition of alumina to the aa7075 improves the mechanical properties of the composite. Further the results of FEA simulation of the composites are close to the actual results which shows that cost and time can be reduced if FEA is performed


Author(s):  
Md. Rahat Hossain ◽  
Md. Hasan Ali ◽  
Md. Al Amin ◽  
Md. Golam Kibria ◽  
Md. Shafiul Ferdous

Aluminium matrix composites (AMCs) used extensively in various engineering fields due to their exceptional mechanical properties. In this present study, aluminium matrix composites (AMCs) such as aluminium alloy (A356) reinforced with rice husk ash particles (RHA) are made to explore the possibilities of reinforcing aluminium alloy. The stir casting method was applied to produce aluminium alloy (A356) reinforced with various amounts of (2%, 4%, and 6%) rice husk ash (RHA) particles. Physical treatment was carried out before the rice husk ash manufacturing process. The effect of mechanical strength of the fabricated hybrid composite was investigated. Therefore, impact test, tensile stress, compressive stress, and some other tests were carried out to analyse the mechanical properties. From the experimental results, it was found that maximum tensile, and compressive stress were found at 6% rice husk ash (RHA) and aluminium matrix composites (AMCs). In future, the optimum percentages of rice husk ash (RHA) to fabricate the hybrid composites will be determined. Also, simulation by finite element method (FEM) will be applied for further investigation.


Sign in / Sign up

Export Citation Format

Share Document