A Nanoindentation Study on Al (TiFe-Mg-SiC) Composites Fabricated via Stir Casting

2019 ◽  
Vol 821 ◽  
pp. 81-88 ◽  
Author(s):  
Samuel Olukayode Akinwamide ◽  
Serge Mudinga Lemika ◽  
Babatunde J. Obadele ◽  
Ojo Jeremiah Akinribide ◽  
Oluwasegun Eso Falodun ◽  
...  

The limitations of aluminium in most engineering applications has led to the development of aluminium matrix composites with improved microstructural and mechanical properties. Nanoindentation techniques was used in assessing the mechanical properties of fabricated aluminium matrix composites with ferrotitanium and silicon carbide as reinforcements. Results from nanoindentation experiments shows the dependence of modulus of elasticity, microhardness and contact depth on the dispersion of ferrotitanium and silicon carbide reinforcements within the aluminium matrix. Highest nanohardness value was observed in composite with 7 wt. % silicon carbide, while the lowest elastic modulus was recorded in as-cast aluminium. Further analysis of specimens confirmed a decrease in maximum penetration depth with respective increase in the addition of silicon carbide reinforcements in the fabricated composites.

Author(s):  
S A Mohan Krishna ◽  
T N Shridhar ◽  
L Krishnamurthy ◽  
K B Vinay ◽  
G V Naveen Prakash

Aluminium matrix composites belong to the family of materials whose mechanical, tribological, thermal and electrical properties can be customized effectively. Most of the commercial work on MMCs has been highlighted on Aluminium as the matrix material. The combination of light weight, environmental resistance and beneficial mechanical properties has made Aluminium alloys exceedingly popular; these properties also make Aluminium best suited for use as a matrix metal. The thermophysical properties of these composites can be tailor made and have excellent specific mechanical properties. These composites can be fabricated with ease. Aluminium matrix composites reinforced with the particles of Silicon Carbide possess high yield strength, low coefficient of thermal expansion or thermal expansivity, high modulus of elasticity and excellent wear resistance by maintaining volume proportion up to 20%. Aluminium hybrid composites can be customized to provide moderate Coefficient of Thermal Expansion (CTE) and high thermal conductivity that are favorable for the applications pertaining to thermal management equipment. However, it is necessary to evaluate different percentage combinations of reinforcements with matrix Aluminium to check for thermal stability and to measure thermal conductivity and coefficient of thermal expansion. It is expected that, Aluminium-Silicon Carbide-Graphite hybrid composites can be used as load bearing material for the above applications. In this paper, a review about the said hybrid composites to investigate thermal properties for engineering applications have been discussed based on its technological relevance, applications and research prospect.


2014 ◽  
Vol 984-985 ◽  
pp. 326-330
Author(s):  
T.M. Chenthil Jegan ◽  
D. Ravindran ◽  
M. Dev Anand

Metal Matrix Composites possesses high mechanical properties compared to unreinforced materials. Aluminium Matrix Composites (AMC) is attracted in the emerging world because of its low cost, less weight and enhanced mechanical properties. In the present study the enhancement in mechanical properties like hardness and tensile strength of AMCs by reinforcing AA 6061 matrix with silicon carbide (SiC) and boron carbide (B4C) particles are analyzed. By enhanced stir casting method aluminium matrix was reinforced with boron carbide particulates and silicon carbide particulates with the various weight percentage of 2.5 %,5% and 7.5%.The tensile strength and hardness was found to increase with the increase in wt% of the reinforcement. From the analysis it is observed that the mechanical property of B4C reinforced AMC is significantly good compared to SiC reinforced AMC.


2014 ◽  
Vol 612 ◽  
pp. 151-155 ◽  
Author(s):  
S Dhinakaran ◽  
T.V. Moorthy

Aluminium matrix composites (AMCs) play a vital role as advanced engineering materials due to their excellent mechanical properties like light weight, strength, wear resistance, toughness. This work focuses on the fabrication of aluminium (AA6061) matrix composites reinforced with 3%, 6% and 9% B4C particle of 104μm using stir casting method. The wettability of B4C particles in the matrix has been improved by adding K2TiF6flux in to the molten metal. The microstructure and mechanical properties of the fabricated AMCs are analyzed. Uniform distribution of B4C particle in the matrix was confirmed using scanning electron microscope (SEM) images. It was found that the tensile strength and hardness of the fabricated AMCs increases with increased B4C particle content.


2021 ◽  
Vol 106 ◽  
pp. 84-89
Author(s):  
Mulugundam Siva Surya ◽  
G. Prasanthi ◽  
I. Chidwilas

Aluminium Matrix Composites (AMCs) are known as lightweight and high-strength materials with potential applications in areas such as aerospace, automobile, defence, engineering, and other industries. AMCs have the advantage of significantly reduce the overall weight of the vehicles and aircraft while maintaining their structural strength. The scope of this work is to fabricate Silicon Carbide (SiC) particle Metal Matrix Composites (MMC) by stir casting combined with mechanical stirring and to investigate the effect of SiC particles on the hardness, tensile and impact the behaviour of SiC particle reinforced 7075 aluminium alloy composites. The reinforcement of micron-sized range particles with an aluminium matrix is expected to improve the mechanical properties in composite materials. Different weight % of SiC particles are used (0, 5, 10, and 15 wt. %) for the synthesis of composites. The manufactured composites were tested to determine their mechanical properties and the results prove that the sample with 10 percentage of silicon carbide has better mechanical properties, comparably.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Gebre Fenta Aynalem

Processing methods of aluminium matrix composites (AMCs) have been changing continuously considering the ease of manufacturing and the final quality of the desired composite. The most well-known processing techniques of AMCs such as stir casting, powder metallurgy, spark plasma sintering, squeeze casting, friction stir processing, liquid metal infiltration, spray codeposition, and reactive in situ techniques have elaborated here with their respective distinguishing features and mechanical properties of the fabricated composites. Moreover, this review paper contains the factors affecting the mechanical properties of AMCs as well as their clear justifications. The mechanical properties of AMCs are highly affected by the type of processing method, process parameters, and type, size, and composition of the reinforcing material. Concerning this, the mechanical properties of aluminium and its alloys are highly improved by adding a variety of reinforcing materials in a broader spectrum.


2015 ◽  
Vol 787 ◽  
pp. 568-572 ◽  
Author(s):  
A. Radha ◽  
K.R. Vijayakumar

Composite materials like Aluminium metal matrix composite is playing a very important role in manufacturing industries e.g. automobile and aerospace industries, due to their superior properties such as light weight, low density, high specific modulus, high fatigue strength etc., In this study Aluminium(Al 6061) is reinforced with Silicon Carbide particles and fabricated by Stir Casting Technique (vortex method). The MMC rectangular bars (samples) are prepared with Al6061 and SiC (28 µ size) as the reinforced particles by weight fraction from 0%, 5%, 10%, and 15% of SiC. The microstructure analysis and Mechanical properties like Tensile Strength, Vickers Hardness and Charpy Impact Strength were investigated on prepared specimens. It is observed that the properties are increased with increasing of reinforced specimens by weight fraction.


Author(s):  
Md. Rahat Hossain ◽  
Md. Hasan Ali ◽  
Md. Al Amin ◽  
Md. Golam Kibria ◽  
Md. Shafiul Ferdous

Aluminium matrix composites (AMCs) used extensively in various engineering fields due to their exceptional mechanical properties. In this present study, aluminium matrix composites (AMCs) such as aluminium alloy (A356) reinforced with rice husk ash particles (RHA) are made to explore the possibilities of reinforcing aluminium alloy. The stir casting method was applied to produce aluminium alloy (A356) reinforced with various amounts of (2%, 4%, and 6%) rice husk ash (RHA) particles. Physical treatment was carried out before the rice husk ash manufacturing process. The effect of mechanical strength of the fabricated hybrid composite was investigated. Therefore, impact test, tensile stress, compressive stress, and some other tests were carried out to analyse the mechanical properties. From the experimental results, it was found that maximum tensile, and compressive stress were found at 6% rice husk ash (RHA) and aluminium matrix composites (AMCs). In future, the optimum percentages of rice husk ash (RHA) to fabricate the hybrid composites will be determined. Also, simulation by finite element method (FEM) will be applied for further investigation.


Sign in / Sign up

Export Citation Format

Share Document