Study on Tribological Performance of Al2O3 Particle Reinforced the Al-Sn Bearing Alloy

2014 ◽  
Vol 633-634 ◽  
pp. 137-140 ◽  
Author(s):  
Bin Sui ◽  
Jian Min Zeng ◽  
Ping Chen ◽  
Li Hua Liang ◽  
Wu Kui Gan ◽  
...  

In order to improve performance of Al-Sn bearing alloys, a new Al2O3/Al-Sn composite was fabricated through in-situ reaction between Al and SiO2. A study has been conducted to investigate tribological performance of the composite on MMW-1 Computer controlled vertical universal friction and wear testing machine. The results show that Al2O3 and Si particles are mainly distributed in the grain boundary and particles are often coated by a thin Sn layer. Friction coefficient of Al2O3/Al-Sn composites is decreased with Sn additions up to 21wt. %.

2014 ◽  
Vol 609-610 ◽  
pp. 8-13 ◽  
Author(s):  
Hua Wei Nie ◽  
Yuan Kang Zhou ◽  
Lv Yang ◽  
Yang Cao

Mass fraction of 1.5%, 3% of the nanomontmorillonite (MMT) were separately added in the phenol prepolymer, phenolic resin/ MMT was synthesized by in-situ method (it is called PF/M). The PF/M was carried out TG analysis using thermal analyser, and the synthetic resin PF/M were as new resin matrix to prepare semimetallic friction material, tribological performance test was carried on XD-MSM fixed speed type friction-wear testing machine in accordance with the GB_5763-2008. The results show that the heat resistance of composite PF/M and tribological performance of friction material are best when nanoMMT is 3% in the resin, the Carbon residue rate of PF/M is an increase of 37% compared with PF without nanoparticles at 600°C, thermal recession temperature of sample by the preparation of PF/M increases above 100°C, and it has stable friction coefficient, overall wear rate decreases 26%, especially in high temperature stage at 350°C, the wear rate decreases significantly, its wear rate decreases 30%.


Author(s):  
Yuanbo Wu ◽  
Xuefeng Yang ◽  
Shouren Wang ◽  
Jian Cheng ◽  
Hui Zhang ◽  
...  

In order to study the tribological properties of V-shaped texture under oil lubrication conditions, the loading force and speed are selected as the influencing factors, each factor selected six levels. Experimental study on friction and wear of V-shaped texture with ring arrangement is finished by MMG-10 Multifunctional Friction and Wear Testing Machine, and the data of the experimental results are analyzed by using Matlab. The results show that there is a near linear relationship between the friction coefficient and the loading force and velocity. The relationship between the friction coefficient and the loading force and velocity can be expressed by a functional equation. The loading force has a greater influence on the friction coefficient than the speed. The SEM images of the post-test specimens show that the main weared zone of the V-shaped texture is the tip part. Create a single V-shaped texture model with Solidworks and use CFD to divide the mesh into the Fluent solution. According to the pressure distribution cloud diagram and the turbulence intensity cloud diagram, the stability of the oil film is improved due to the enhanced fluidity of the oil film and the small change in the oil pressure. The tip portion is also the region with a large turbulence intensity value. The improvement of the stability of the oil film is the key to reduce the friction coefficient of the V-shaped texture when the loading force increases.


2013 ◽  
Vol 302 ◽  
pp. 115-118 ◽  
Author(s):  
Zhi Fang Cheng ◽  
Hong Sheng Ding ◽  
Hui Rong ◽  
Li Geng Zhao

Nano-structured and micron Al2O3-13%TiO2 coatings were deposited by air plasma spraying.Wear properties of the coatings under different temperature trough SRV friction and wear testing machine were studied, the results shows that the friction coefficient of nano and micron Al2O3-13%TiO2 coatings both have rising trend.with the temperature increases.The wear volume of micron coating is 1.8-2 times that of the nano coating..The nanometer Al2O3-13%TiO2 coating slide with ZrO2 is still compact and has no large crack after abrasion.


2014 ◽  
Vol 599-601 ◽  
pp. 153-159 ◽  
Author(s):  
Tao Zeng ◽  
Lin Jiao ◽  
Da Chuan Zhu ◽  
Chen Yang

The friction and wear properties of Cu-Te-Li alloys under dry sliding condition were studied by M-200 wear testing machine. The morphology and chemical composition of worn surfaces were analyzed by SEM and EDS, thus the effect of aging treatment on friction coefficient, wear rate and wear mechanism was discussed. The results showed that Te element could improve the wear resistance of copper alloys. With Te content increasing, the friction coefficient of Cu-Te-Li alloys declined slightly and tended to be stable as a whole, while the wear rate decreased obviously. During the process of dry sliding friction, adhesive wear was the dominant mechanism, with oxidative wear coexisting. But for the Cu-Te-Li alloys after aging treatment, abrasive wear appeared and adhesive wear was intensified, especially at higher friction velocity.


2013 ◽  
Vol 774-776 ◽  
pp. 996-1000
Author(s):  
Dong Ya Yang ◽  
Yue Wang ◽  
Jun Gong

0-20wt.% PEEK reinforced PTFE composites were prepared by a cold pressing-sintering method. The tribological properties and surface morphology of the transfer films were investigated via a MRH-3 friction and wear testing machine and scanning electron microscopy (SEM) respectively. Results show that the wear resistance of PTFE composite is improved more than 670 times with the addition of 20wt.% PEEK and the lowest friction coefficient is obtained with 5wt.% PEEK. Surface morphology shows that the transfer film formed on the counterface becomes more and more uniform and continuous with the addition of PEEK filler, frictional trace on the transfer film suggests that abrasive wear occurred during the sliding process.


2013 ◽  
Vol 300-301 ◽  
pp. 833-836
Author(s):  
Shi Jie Wang ◽  
Hao Lin ◽  
Xiao Ren Lv

The progressing cavity pump (PCP) always works in the waxy oil well. Therefore the research on the influence of various liquid paraffin contents in crude oil on the friction and wear behaviors of the progressing cavity pump`s stator is very important for choosing the best stator rubber and developing the service life of PCP. Wear behavior of nitrile butadiene rubber (NBR) and fluororubber (FKM) was investigated at room temperature using a reciprocating friction and wear testing machine under the various paraffin contents in crude oil (0%、10%、30%、50%、100%). The wear morphology of blend was analyzed through the stereomicroscope and the wear behavior of two blends was also discussed and compared. The results show that the wear resistance of FKM is better than that of NBR under the same paraffin content in crude oil; With the increase of the paraffin content, the wear and coefficient of friction also increase. When the paraffin content in crude oil is less than 30%, the wear loss of NBR and FKM are basically the same; When the paraffin content in crude oil is more than 30%, the wear loss of NBR is far more than that of FKM.


2007 ◽  
Vol 127 ◽  
pp. 245-250 ◽  
Author(s):  
Mitsuyasu Yatsuzuka ◽  
Yoshihiro Oka ◽  
Akifumi Tomita ◽  
Noritaka Murata ◽  
Mitsuaki Hirota

Diamond-like carbon film (DLC) with an interlayer of plasma sprayed tungsten-carbide (WC) was prepared on an aluminum alloy substrate (A5052) by a hybrid process of plasma-based ion implantation and deposition using hydrocarbon gas. Typical thicknesses of DLC and WC films were 1 μm and 100 μm, respectively. The hardness and friction coefficient of DLC were typically 15 GPa and 0.15, respectively. The durability of DLC/WC/A5052 system was evaluated from the measurement of the friction coefficient by a ball-on-disk friction tester in which the loaded ball was drawn repeatedly across a sample and the load was increased with each traverse. For the DLC/A5052 system, which has no WC interlayer, the DLC film was broken quickly because of distortion of the substrate. For the DLC/WC/A5052 system, on the other hand, the DLC film was excellent in durability for long running. The wear rate of rubber rotor to the metal rotor was measured by a roller-pitching-type wear testing machine, showing large reduction in wear rate using DLC-coated metal rotor.


2017 ◽  
Vol 69 (2) ◽  
pp. 248-258 ◽  
Author(s):  
Wengang Chen ◽  
Xueyuan Liu ◽  
Lili Zheng

Purpose This paper aims to clarify the friction properties of 304 steel surface modification. The surface modification includes laser texturing processing and nitriding treatment on 304 steel surface, and then the friction properties’ test was conducted on different friction directions and different upper test samples by using microfriction and wear testing machine. Design/methodology/approach The diameter and spacing of 100-, 150-, 200-, 300-μm pit array on the surface of 304 steel were calculated using a M-DPSS-50 semiconductor laser device. Then, the textured surface was nitriding-treated using a nitriding salt bath device. The chemical composition, surface morphology and surface microhardness of the composite-modified surface were measured by X-ray diffraction and by using an optical microscope and a microhardness tester. The tribological characteristics of the composite-modified surface were tested by MRTR microcomputer-controlled multifunctional friction and wear testing machine. Findings The result showed that a rule pit texture surface was obtained by the texture processing. The microhardness of nitriding treatment surface reached 574.27HV0.1, which significantly higher than 222.58HV0.1 of 304 steel. The composite-modified surface has excellent anti-friction and wear resistance properties when the upper specimen was GCr15 steel and ZrO2, respectively. The composite-modified surface has excellent anti-friction and anti-wear properties after long time friction under different angles. However, the friction coefficient and wear morphology of the friction pairs are not affected by the friction angle. Research limitations/implications Because of the chosen research approach, the research results may lack generalizability. Therefore, researchers are encouraged to test the proposed propositions further. Practical implications The paper conducted a systematic study of the tribological characteristics of 304 steel composite modification surface and provided a good basis for the extensive application of 304 steel. Social implications The study provides a good basis for the extensive application of 304 steel. Originality/value This paper fulfils an identified need to study the extensive application of 304 steel.


2011 ◽  
Vol 189-193 ◽  
pp. 231-235
Author(s):  
Yun Cai Zhao ◽  
Li Wang

The influence of MoS2 lubrication phase on the tribological properties of the Ni60A/MoS2 composite coating was conducted on UMT-2 micro-wear testing machine (USA), discussing the self-lubricating effect and mechanism. The result shows that with the increasing content of MoS2, the friction coefficient of the coating which changed with the increasing content of the MoS2 presents firstly decreases then increases, and the value reach the minimum when the quality percent of MoS2 wrapped with Nickel is 35%. Low-friction property of the Ni60A/MoS2 composite coating is due to the forming of MoS2 lubricating film in friction surface. The decreasing of the friction coefficient of the coating is in proportion to the coverage area of MoS2 lubricating film.


Sign in / Sign up

Export Citation Format

Share Document