Analysis of Deformation and Failure Characteristics of Stratified Rock Mass around Underground Opening Based on a Microstructure Tensor Approach

2014 ◽  
Vol 638-640 ◽  
pp. 789-793 ◽  
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

In order to have a good understanding of the geotechnical behavior around underground opening excavated in stratified rock mass, numerical simulation of a gate-shaped cavern excavation was conducted by applying a transversely isotropic model base on microstructure tensor method. The simulations were performed under the assumption that both the beddings and the in-situ middle stress vector run parallel with the cavern. Effect of the dip angle of beddings and that of in-situ major stress vector on deformation and failure of rock mass around the cavern was investigated. The mechanism underneath the image of deformation and failure was also discussed. It is found that the dip angle of beddings has less influence than the in-situ stress on deformation while the dip angle of bedding and the direction of in-situ major stress vector are equally important to the failure of surrounding rock mass.

2011 ◽  
Vol 90-93 ◽  
pp. 2033-2036 ◽  
Author(s):  
Jin Shan Sun ◽  
Hong Jun Guo ◽  
Wen Bo Lu ◽  
Qing Hui Jiang

The factors affecting the TBM tunnel behavior in jointed rock mass is investigated. In the numerical models the concrete segment lining of TBM tunnel is concerned, which is simulated as a tube neglecting the segment joint. And the TBM tunnel construction process is simulate considering the excavation and installing of the segment linings. Some cases are analyzed with different joint orientation, joint spacing, joint strength and tunnel depth. The results show that the shape and areas of loosing zones of the tunnel are influenced by the parameters of joint sets and in-situ stress significantly, such as dip angle, spacing, strength, and the in-situ stress statement. And the stress and deformation of the tunnel lining are influenced by the parameters of joint sets and in-situ stress, too.


2010 ◽  
Vol 163-167 ◽  
pp. 3128-3132
Author(s):  
Guang Yin Lu ◽  
Zi Qiang Zhu ◽  
Qun Yi Liu

Stratified rock mass has been widely existing in geotechnical engineering. With obvious transversely isotropic characteristic, stability of stratified rock mass is not only related to strength of intact rock but also to the inclination and characteristic of structure plane. The parameters of the structure plane have great impact on the stability of stratified rock mass. For the stratified rock mass is no homogenous, the homogenous model is not suitable to describe the characteristic of stratified rock mass. Then building an appropriate becomes necessary. In the present paper, Ubiquitous-joint model is introduced to describe the characteristic of rock mass, and the strength reduction method based on the Ubiquitous-joint model is proposed, which then is used to calculate the safety factor of slope, while the relationships between safety factor, strength properties of structure plane are analyzed, whose results can give guidance for the real practice.


2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fengnian Wang ◽  
Shizhuang Chen ◽  
Pan Gao ◽  
Zhibiao Guo ◽  
Zhigang Tao

In this study, the deformation characteristics and mechanical properties of coal and rock mass in the S2N5 working face of the Xiaokang coal mine are analyzed to address the problem of large deformation of soft rocks with high in situ stress surrounding roadways. Through a newly developed grouting pipe, a double-shell grouting technology, consisting of low-pressure grouting and high-pressure split grouting, is proposed for the Xiaokang coal mine. In addition, the effect of grouting is evaluated by borehole peeping and deformation monitoring. The results show that the double-shell grouting technology can effectively improve the overall mechanical properties of the surrounding coal and rock mass, preventing the large deformation and failure of the roadway. This technology can be useful when analyzing and preventing large deformation of soft rock roadways.


2006 ◽  
Vol 306-308 ◽  
pp. 1509-1514 ◽  
Author(s):  
Jing Feng ◽  
Qian Sheng ◽  
Chao Wen Luo ◽  
Jing Zeng

It is very important to study the pristine stress field in Civil, Mining, Petroleum engineering as well as in Geology, Geophysics, and Seismology. There are various methods of determination of in-situ stress in rock mass. However, hydraulic fracturing techniques is the most convenient method to determine and interpret the test results. Based on an hydraulic fracturing stress measurement campaign at an underground liquefied petroleum gas storage project which locates in ZhuHai, China, this paper briefly describes the various uses of stress measurement, details of hydraulic fracturing test system, test procedure adopted and the concept of hydraulic fracturing in arriving at the in-situ stresses of the rock mass.


Geosciences ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 518
Author(s):  
Babar Khan ◽  
Syed Muhammad Jamil ◽  
Jung Joo Kim ◽  
Turab H. Jafri ◽  
Jonguk Kim

To accommodate traffic volume on roads due to ever-increasing population growth, the widening of highways and motorways is in high demand. Nevertheless, the widening of tunnels on these road networks is quite complex due to the presence of numerous rock types, in situ stress, and different widening modes. To overcome these complexities, eight different tunnel shapes were simulated under varying support conditions for asymmetric and symmetric widening. It was found that the tunnels with a round shape, such as horseshoe and semicircular with flatbed, are more effective for asymmetric widening, whereas the provision of a rounded invert in these shapes can reverse the widening option to symmetric. Furthermore, an insignificant effect of the difference in asymmetric and symmetric widening of regular tunnel shapes, such as box, rectangular, and semi-elliptical, was found. A full factorial design statistical analysis confirmed the decrease in tunnel deformation by using various tunnel support systems and showed a significant deformation difference according to monitoring locations at the tunnel periphery. The deformation difference in the case of both tunnel widening modes was also analyzed according to different design parameters. This study provides a comprehensive understanding of rock mass behavior when the widening of any underground opening is carried out.


Sign in / Sign up

Export Citation Format

Share Document