Numerical Simulation on Air Volume Flow Rate Distribution of Stator Ducts for Salient Pole Synchronous Motor

2014 ◽  
Vol 644-650 ◽  
pp. 373-376
Author(s):  
Li Liu ◽  
Yi Ping Lu ◽  
Jia De Han ◽  
Xue Mei Sun

Air volume flow rate distribution of stator ducts along axial and circumferential for salient pole synchronous motor is strongly influenced by the air flow field in the air gap and rotor poles, which is completely different from the flow characteristics of non-salient pole motor and it directly relates to the peak temperature of stator bars and core and axial temperature difference which can affect the safety of the operation. A three-dimensional physical model of 1/8 motor was established and corresponding solution domain boundary conditions were given in this article. The air volume flow rate distribution of stator ducts along axial and circumferential was analyzed based on CFD. The study show that at the same position of the axial stator, the cooling air flow into stator ducts along the circumferential direction is uneven, the air volume flow rate distribution is largely influenced by rotor pole pieces, geometry and position of pole support block and rotor rotation direction.

2021 ◽  
Vol 11 (11) ◽  
pp. 4855
Author(s):  
Anci Wang ◽  
Jianmin Fang ◽  
Xiang Yin ◽  
Yulong Song ◽  
Feng Cao ◽  
...  

The air flow rate on the gas cooler side is one of the key parameters affecting the performance and running safety of transcritical CO2 electric vehicle air conditioning systems. After experimentally analyzing the effects of the air volume flow rate in the gas cooler on the cycle parameters and system performance, a novel method to evaluate the optimal air flow rate was proposed. In addition, the effect of the gas cooler air volume flow rate on the key performance parameters of the system (e.g., optimal discharge pressure) was explored. Finally, the coupling effects of the compressor speed, ambient temperature and optimal air flow rate on the system performance was also exhaustively assessed. It was found that as the discharge temperature, the CO2 temperature at the gas cooler outlet and the discharge pressure did not vary more than ±2%, the corresponding gas cooler air volume flow rate was optimal. For the single-row and dual-process microchannel evaporator used in this work, the recommended value of the optimal gas cooler air volume flow rate was 2500 m3·h−1. The results could provide reference for the fan speed design of electric vehicle CO2 air conditioning systems, especially for the performance under idling model.


2011 ◽  
Vol 308-310 ◽  
pp. 563-567
Author(s):  
Zhong Min Wan ◽  
Zu Yi Zheng ◽  
Huan Xin Chen ◽  
Jun Liu ◽  
Ting Xiang Jin

According to the structural characteristics of floor standing air-conditioner,three dimensional numerical model of air duct system for a certain floor standing air-conditioner is developed to simulate aerodynamic characteristic of the air duct. Flow characteristics and deficiency of air duct for original floor standing air-conditioner are analyzed, and the optimal schemes of air duct are raised and numerical simulation has been carried on to obtain aerodynamic characteristic of the new air duct. The numerical results show that the volume flow rate of air-conditioner with new air duct is increased by 6.1%. The experimental results of air-conditioner with new air duct show the volume flow rate of new air duct is promoted by 5.6% at the same approximate noise level. The numerical results agree well with the previous experiment.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1023
Author(s):  
Piotr Ciuman ◽  
Jan Kaczmarczyk

Ventilation of an indoor swimming pool is a very energy consuming process. This is a result of, among other things the required high value of the ventilation air volume flow rate, calculated on the basis of the moisture gains in the facility. The total energy consumption consists of the heat required to heat this air and the electricity needed to transport it. It is possible to reduce the ventilation air volume flow rate by assuming the correct value of specific humidity of the supply and indoor air, but then a deterioration of thermal-moisture conditions in the building can be expected. The aim of this paper was to examine how the reduction of the supply air volume flow rate affects the energy consumption for indoor swimming pool ventilation. It was also checked how this consumption can be reduced by using two-stage heat recovery in the air handling unit. Multi-variant simulations of energy consumption for indoor swimming pool ventilation were carried out using the IDA ICE software for day and night operation of the swimming pool throughout the year. The results of the research proved that reduction of the supply air volume flow rate resulted in the lower energy expenditure on ventilation. The variant with additional local air supply to the lifeguard zone was also analysed, which caused only a slight increase in energy demand for ventilation.


2020 ◽  
Vol 20 (2) ◽  
pp. 111-121
Author(s):  
Hadi O . Basher ◽  
Riyadh S Al-Turaihi ◽  
Ahmed A. Shubba

In this project, the flow distribution for air and water, and the enhancement of the heattransfer coefficient are experimentally studied. Experimental studies have been performed totest the influence of discharge, pitch, the height of ribs at a constant heat flux on thetemperature and pressure distributions. Along the channel of the test and the heat transfercoefficient, the water volume flow rate was about (5-12 L/min), the air volume flow rate wasabout (5.83-16.66 L/min), and heat were (80, 100,120, watt). An experimental rig wasconstructed within the test whole system. On the other hands, the channel has a divergentsection with an angle =15o with vertical axis. The study included changing in the ribs heightby using three values (12, 15, 18 mm) and changing the ribs pitch into three values (5, 8, 10mm).The results indicated an increasing in the local heat transfer coefficient as a result ofincreasing the discharge. While there was an inverse influence for the temperature distributionalong the test channel which drops when the discharge rise. The results also confirm that theincreasing in the pitch distance leads to reduce the heat transfer coefficient. Increasing theribs height increases the coefficient of heat transfer. However, the experiment heat transfercoefficient improves about (15.6 %) when the water volume flow rate increased from (5 to 12L/min), and about (18.7%) when the air volume flow rate increased from (5.83 to 16.66L/min). The best heat transfer coefficient was about (35.6 %) which can be achieved whenthe pitch decreased from (10 to 5mm). The increasing of the height from (12 to 18) mmimproves the heat transfer coefficient about (11.2 %). The best rib dimension was 18 mmheight, and 5 mm pitch, which give a maximum heat transfer coefficient (1212.02 W/m2. oC).


2021 ◽  
Vol 13 (18) ◽  
pp. 10300
Author(s):  
Chuan Choong Yang ◽  
Noor Fiqri Razqi Bin Noor Hanafi ◽  
Noor Hazrin Hany Bt Mohamad Hanif ◽  
Ahmad Faris Ismail ◽  
Hsueh-Hsien Chang

The purpose of harvesting vibration energy is to obtain clean and sustainable energy by converting vibration energy from ambient sources into a voltage output. In this work, a piezoelectric sensor, PZT-5H is attached to a 3D printed and custom-made mounting to be placed at an air conditioning condenser unit, to harvest vibration energy. The configuration of the harvester is non-intrusive, in which the harvester did not intrude into compressor unit operation. Temperature (20 °C, 22 °C, and 24 °C) and air volume flow rates (3 levels of air volume flow rate at 245 L/second, 274 L/second, and 297 L/second) were taken into consideration in this investigation. An accelerometer was first used to investigate the optimum vibration frequency in Hertz, and six locations were identified. Next, the piezoelectric sensor was mounted at these six locations, and the output root-mean-square (RMS) voltage from the piezoelectric sensor was obtained. The analysis of variance (ANOVA) indicated that temperature and air volume flow rates factors were significant. It was found that the location identified with the highest amount of vibration at 830.2 Hz from accelerometer measurement, was also the highest amount of RMS voltage, at 510.82 mV, harvested by the piezoelectric, from the temperature of 20 °C and air volume flow rates at high level (air flow volume flow rate at 297 L/second). From this work, it is feasible to utilize this novel method of harvesting waste vibration energy from the air conditioning compressor unit.


2013 ◽  
Vol 17 (5) ◽  
pp. 1517-1520
Author(s):  
Qian Miao ◽  
Rong-Chao Yang ◽  
Qing Zhang ◽  
Jing Cheng ◽  
Jia-Cun Shao ◽  
...  

The volume flow rate measured by air flow plate is influenced by the ambient conditions during the calibration. A series of numerical examples are conducted for the relationship and the outcomes demonstrated that the calibration is quite sensitive to the atmospheric pressure and the ambient temperature, but insensitive to relative humidity. The experiment model has been applied to calibration results with wide ranging ambient conditions. In conclusion, the results of this study demonstrate the benefits to calibration data of minimizing the effects of ambient conditions.


Author(s):  
Joe A. Mascorro ◽  
Gerald S. Kirby

Embedding media based upon an epoxy resin of choice and the acid anhydrides dodecenyl succinic anhydride (DDSA), nadic methyl anhydride (NMA), and catalyzed by the tertiary amine 2,4,6-Tri(dimethylaminomethyl) phenol (DMP-30) are widely used in biological electron microscopy. These media possess a viscosity character that can impair tissue infiltration, particularly if original Epon 812 is utilized as the base resin. Other resins that are considerably less viscous than Epon 812 now are available as replacements. Likewise, nonenyl succinic anhydride (NSA) and dimethylaminoethanol (DMAE) are more fluid than their counterparts DDSA and DMP- 30 commonly used in earlier formulations. This work utilizes novel epoxy and anhydride combinations in order to produce embedding media with desirable flow rate and viscosity parameters that, in turn, would allow the medium to optimally infiltrate tissues. Specifically, embeding media based on EmBed 812 or LX 112 with NSA (in place of DDSA) and DMAE (replacing DMP-30), with NMA remaining constant, are formulated and offered as alternatives for routine biological work.Individual epoxy resins (Table I) or complete embedding media (Tables II-III) were tested for flow rate and viscosity. The novel media were further examined for their ability to infilftrate tissues, polymerize, sectioning and staining character, as well as strength and stability to the electron beam and column vacuum. For physical comparisons, a volume (9 ml) of either resin or media was aspirated into a capillary viscocimeter oriented vertically. The material was then allowed to flow out freely under the influence of gravity and the flow time necessary for the volume to exit was recored (Col B,C; Tables). In addition, the volume flow rate (ml flowing/second; Col D, Tables) was measured. Viscosity (n) could then be determined by using the Hagen-Poiseville relation for laminar flow, n = c.p/Q, where c = a geometric constant from an instrument calibration with water, p = mass density, and Q = volume flow rate. Mass weight and density of the materials were determined as well (Col F,G; Tables). Infiltration schedules utilized were short (1/2 hr 1:1, 3 hrs full resin), intermediate (1/2 hr 1:1, 6 hrs full resin) , or long (1/2 hr 1:1, 6 hrs full resin) in total time. Polymerization schedules ranging from 15 hrs (overnight) through 24, 36, or 48 hrs were tested. Sections demonstrating gold interference colors were collected on unsupported 200- 300 mesh grids and stained sequentially with uranyl acetate and lead citrate.


Sign in / Sign up

Export Citation Format

Share Document