Vibration Monitoring Using Wavelets Transform Feature Extraction Algorithm and Technique

2014 ◽  
Vol 666 ◽  
pp. 256-266
Author(s):  
Okuwobi Idowu Paul ◽  
Yong Hua Lu

Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. The oscillation may be periods such as the motion of a pendulum or random such as the movement of tire on a gravel road. Vibration causes waste of energy and creates unwanted sound-noise. Monitoring such process generally possess a big problem especially for a system. The present traditional single resolution techniques could not solve this problem, coupled with the Fourier transform which seems to be one of the best method in analyzing and monitoring vibration in machineries or machinery components.This paper present a new algorithm using wavelet- packet based feature in classification of vibration signals. This study explores the feasibility of the wavelet packet transform as a tool in search for features that may be used in the detection and classification of machinery vibration signals. By formulating a systematic method of determining wavelet packet based features that exploit class specific differences among interested signals, which avoid human interaction. This new algorithm provide more effective method to achieve robust classification than traditional single resolution techniques. The new algorithm in wavelet transform techniques proved to be more efficient, better analysis, and provides better results with minimum error than any existing method.

2014 ◽  
Vol 8 (1) ◽  
pp. 445-452
Author(s):  
Liu Mingliang ◽  
Wang Keqi ◽  
Sun Laijun ◽  
Zhang Jianfeng

Aiming to better reflect features of machinery vibration signals of high-voltage (HV) circuit breaker (CB), a new method is proposed on the basis of energy-equal entropy of wavelet packet(WP). First of all, three-layer wavelet packet decomposes vibration signal, reconstructing 8 nodes of signals in the 3rd layer. Then, the vector is extracted with energy-equal entropy of reconstructed signals. At last, the simple back-propagation (BP) neural network for fault diagnosis contributes to classification of the characteristic parameter. This technology is the basis of a number of patents and patents pending, which is experimentally demonstrated by the significant improvement of diagnose faults.


2020 ◽  
Vol 5 (2) ◽  
pp. 609
Author(s):  
Segun Aina ◽  
Kofoworola V. Sholesi ◽  
Aderonke R. Lawal ◽  
Samuel D. Okegbile ◽  
Adeniran I. Oluwaranti

This paper presents the application of Gaussian blur filters and Support Vector Machine (SVM) techniques for greeting recognition among the Yoruba tribe of Nigeria. Existing efforts have considered different recognition gestures. However, tribal greeting postures or gestures recognition for the Nigerian geographical space has not been studied before. Some cultural gestures are not correctly identified by people of the same tribe, not to mention other people from different tribes, thereby posing a challenge of misinterpretation of meaning. Also, some cultural gestures are unknown to most people outside a tribe, which could also hinder human interaction; hence there is a need to automate the recognition of Nigerian tribal greeting gestures. This work hence develops a Gaussian Blur – SVM based system capable of recognizing the Yoruba tribe greeting postures for men and women. Videos of individuals performing various greeting gestures were collected and processed into image frames. The images were resized and a Gaussian blur filter was used to remove noise from them. This research used a moment-based feature extraction algorithm to extract shape features that were passed as input to SVM. SVM is exploited and trained to perform the greeting gesture recognition task to recognize two Nigerian tribe greeting postures. To confirm the robustness of the system, 20%, 25% and 30% of the dataset acquired from the preprocessed images were used to test the system. A recognition rate of 94% could be achieved when SVM is used, as shown by the result which invariably proves that the proposed method is efficient.


2013 ◽  
Vol 644 ◽  
pp. 304-307 ◽  
Author(s):  
Chang Shun Wang

The different clearances of main bearing of previously designed on EQ6100 model gasoline engine is diagnosed by means of vibration monitoring mechanism. Breakdown signals of main test on different speed, clearance of main bearing, test spot and weather were analyzed by Spectral Analysis method and compared with normal and abnormal vibration signals. As a result, the characteristic parameters and the identifying methods of breakdown are given. In addition, the problems of fault detection are pointed out.


Author(s):  
W B Xiao ◽  
J Chen ◽  
G M Dong ◽  
Y Zhou ◽  
Z Y Wang

This paper presents a novel multichannel fusion approach based on coupled hidden Markov models (CHMMs) for rolling element bearing fault diagnosis. Different from a hidden Markov model (HMM), a CHMM contains multiple state sequences and observation sequences, and hence has powerful potential for multichannel fusion. In this study, a two-chain CHMM is employed to integrate the two-channel vibration signals collected from bearings, i.e. the horizontal and vertical vibration signals. Efficient probabilistic inference and parameter estimation algorithms are developed for the model. An experiment was carried out to validate the proposed approach. Normalized wavelet packet energy and wavelet packet energy entropy are extracted as features for classification respectively. Then, the results of the proposed approach are compared with those of the currently used approach based on HMMs and one-channel signals. The results show that the proposed approach is feasible and effective to improve the classification rate.


1999 ◽  
Author(s):  
T. I. Liu ◽  
F. Ordukhani

Abstract An on-line monitoring and diagnostic system is needed to detect faulty bearings. In this work, by applying the feature selection technique to the data obtained from vibration signals, six indices were selected. Artificial neural networks were used for nonlinear pattern recognition. An attempt was made to distinguish between normal and defective bearings. Counterpropagation neural networks with various network sizes were trained for these tasks. The counterpropagation neural networks were able to recognize a normal from a defective bearing with the success rate between 88.3% to 100%. The best results were obtained when all the six indices were used for the on-line classification of roller bearings.


Author(s):  
Christopher-John L. Farrell

Abstract Objectives Artificial intelligence (AI) models are increasingly being developed for clinical chemistry applications, however, it is not understood whether human interaction with the models, which may occur once they are implemented, improves or worsens their performance. This study examined the effect of human supervision on an artificial neural network trained to identify wrong blood in tube (WBIT) errors. Methods De-identified patient data for current and previous (within seven days) electrolytes, urea and creatinine (EUC) results were used in the computer simulation of WBIT errors at a rate of 50%. Laboratory staff volunteers reviewed the AI model’s predictions, and the EUC results on which they were based, before making a final decision regarding the presence or absence of a WBIT error. The performance of this approach was compared to the performance of the AI model operating without human supervision. Results Laboratory staff supervised the classification of 510 sets of EUC results. This workflow identified WBIT errors with an accuracy of 81.2%, sensitivity of 73.7% and specificity of 88.6%. However, the AI model classifying these samples autonomously was superior on all metrics (p-values<0.05), including accuracy (92.5%), sensitivity (90.6%) and specificity (94.5%). Conclusions Human interaction with AI models can significantly alter their performance. For computationally complex tasks such as WBIT error identification, best performance may be achieved by autonomously functioning AI models.


Sign in / Sign up

Export Citation Format

Share Document