Hydrothermal Synthesis and Electrochemical Performance of LiNi0.5Mn0.5O2 as Lithium-Ion Battery Cathode

2014 ◽  
Vol 672-674 ◽  
pp. 638-645 ◽  
Author(s):  
Hu Zhao ◽  
Zhong Bo Hu ◽  
Xiao Ling Xiao ◽  
Xiang Feng Liu

Hydrothermal method was successfully employed to synthesize LiNi0.5Mn0.5O2 and the crystallinity of the resultant product was further improved by an annealing process. The structural information of the final product was analyzed by X-ray diffraction (XRD) and Rietveld refinement. The results showed that the Li/Ni exchange rate of hydrothermal samples was lower than traditional solid state method. Because of the improvement of the crystallinity the capacity of the annealed product was much better than that of the as prepared hydrothermal product. The capacity of annealed sample maintained 100mAh/g after 100 charge/discharge cycles. ICP-OES element analysis show that both hydrothermal and annealed samples are non-stoichiometric due to the existence of high valence Ni3+ and Mn4+ ions in LiNi0.5Mn0.5O2 samples which might be largely responsible for the lower electrochemical capacity. Our work demonstrated that stoichiometric LiNi0.5Mn0.5O2 with lower Li/Ni exchange could be synthesized by hydrothermal method when suitable oxidants were selected.

2014 ◽  
Vol 633-634 ◽  
pp. 495-498
Author(s):  
Xiao Bing Huang ◽  
Hong Hui Chen ◽  
Shi Biao Zhou ◽  
Yuan Dao Chen ◽  
Bei Ping Liu ◽  
...  

Spinel Li4-xKxTi5O12(x=0, 0.03) were successfully synthesized by a traditional solid-state method and systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and the charge-discharge test, respectively. The results demonstrated that Li3.97K0.03Ti5O12exhibited much better rate performance in comparsion with Li4Ti5O12. At 0.2 C and 10 C, it delivered a discharge capacity of 173 mAh g-1and 124 mAh g-1respectively, and after 100 cycles at 10 C, 96.1% of its initial capacity was retained.


2013 ◽  
Vol 787 ◽  
pp. 58-64 ◽  
Author(s):  
Xiang Feng Li ◽  
Zhao Zhang ◽  
Fang Liu ◽  
Shu Ping Zheng

The LiFePO4/C composites with different morphology are synthesized by a novel glucose assisted hydrothermal method at various glucose concentrations (from 0 to 0.25mol/L) and the insoluble lithium source Li2CO3, (NH4)2Fe (SO4)2·6H2O and (NH4)2HPO4(n (Li):n (Fe):n (P)=1:1:1) are used as raw materials. The structure, morphology, thermal performance and electrochemical properties of the synthesized composites are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), thermogravimetry/differential scanning calorimetry (TG-DSC), galvanostatic charge/discharge tests and cyclic voltammetry (CV). The results show that the LiFePO4/C synthesized with 0.125mol/L glucose has the relatively small particles size (0.1~0.5μm) and the well spherical morphology. The optimal sample exhibits a high discharge capacity of 160.0mAh/g at the first cycle and exhibits a good reversibility and stability in CV tests.


Author(s):  
Adelyna Oktavia ◽  
Kurnia Sembiring ◽  
Slamet Priyono

Hospho-material of olivine, LiMnPO4 identified as promising for cathode material generation next Lithium-ion battery and has been successfully synthesized by solid-state method with Li2Co3, 2MnO2, 2NH4H2PO4 as raw material. The influence of initial concentration of precursors at kalsinasi temperatures (400-800 ° C) flows with nitrogen. The purity and composition phase verified by x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), spectroscopy, energy Dispersive x-ray Analysis (EDS), Raman spectra. General investigation shows that there is a correlation between the concentration of precursors, the temperature and the temperature of sintering kalsinasi that can be exploited to design lithium-ion next generation.


2020 ◽  
Author(s):  
Zhou Xu ◽  
Sun Jiajia ◽  
Zhang Ningkang ◽  
Sun Huazhang ◽  
Tao Wenhong ◽  
...  

Abstract Ce2[Zr1-x(Mg1/3Sb2/3)x]3(MoO4)9 (0.02≤x≤0.10) ceramics were prepared well through the traditional solid-state method. A single phase, belonging to the space group of R-3c, was detected by using X-ray diffraction at sintering temperatures ranging from 700 to 850 °C. The crystallization micro-structural of specimens was examined by applying Scanning electron microscopy. The structural refinement of these samples was investigated in detail by performing the Rietveld refinement method. The intrinsic properties were calculated and explored via far-infrared reflectivity spectroscopy. The correlations between the chemical bonds parameters and microwave dielectric properties were calculated and analyzed by P-V-L theory. Ce2[Zr0.94(Mg1/3Sb2/3)0.06]3(MoO4)9 ceramics with excellent dielectric properties: εr = 10.37, Q×f = 71748 GHz and τf = −13.6 ppm/°C sintered at 725 °C for 6 hours.


1996 ◽  
Vol 11 (4) ◽  
pp. 804-812 ◽  
Author(s):  
Y. Namikawa ◽  
M. Egami ◽  
S. Koyama ◽  
Y. Shiohara ◽  
H. Kutami

Large YBa2Cu3O7−x (Y123) single crystals (larger than 13 mm cubed) have been grown along the c-axis reproducibly by the modified pulling method. The crystallinity of Y123 single crystal was investigated by x-ray diffraction and x-ray topography. Crystals grown from an MgO single crystal seed had some low angle subgrain boundaries which tilted 0.1–0.8° from each other. These grain boundaries originated from the seed crystal, and the subgrains were extended along the growth direction from the seed crystal. Y123 single crystals with no marked subgrains in the whole area were obtained by using Y123 single subgrain crystal seeds. FWHM of the x-ray rocking curve for the crystal so produced was about 0.14°, which was much better than the spectrum consisting of several separated peaks obtained from the previous crystals. Tc onset of the annealed sample was about 93.6 K, and the transition width was about 0.9 K. The low angle subgrain boundaries did not seem to be effective pinning centers for the magnetic flux.


2011 ◽  
Vol 415-417 ◽  
pp. 1399-1402 ◽  
Author(s):  
Shu Yuan Zhang ◽  
Quan Xi Cao

La 0.7 Sr 0.3 MnO 3 powders have been synthesized at different temperatures by the traditional solid state method. The crystal structures have been characterized by X-ray diffraction (XRD). The electromagnetic parameters were measured by vector network analyzer (VNA) within the frequency range of 5.85-18GHz. It’s found that the pure perovskite structure has been obtained at the temperature of 1000°C. The bandwidth for R<-6dB became thinner with the sintering temperature’s increase from 1000°C to 1150°C, and the absorbing peak moves to the higher frequency first and low frequency then, the absorbing peak is enhanced first and weakened then.


2021 ◽  
Vol 10 (3) ◽  
pp. 1173-1182
Author(s):  
M. A. Nazri ◽  
Anis Nurashikin Nordin ◽  
L. M. Lim ◽  
M. Y. Tura Ali ◽  
Muhammad Irsyad Suhaimi ◽  
...  

Zinc batteries are a more sustainable alternative to lithium-ion batteries due to its components being highly recyclable. With the improvements in the screen printing technology, high quality devices can be printed with at high throughput and precision at a lower cost compared to those manufactured using lithographic techniques. In this paper we describe the fabrication and characterization of printed zinc batteries. Different binder materials such as polyvinyl pyrrolidone (PVP) and polyvinyl butyral (PVB), were used to fabricate the electrodes. The electrodes were first evaluated using three-electrode cyclic voltammetry, x-ray diffraction (XRD), and scanning electron microscopy before being fully assembled and tested using charge-discharge test and two-electrode cyclic voltammetry. The results show that the printed ZnO electrode with PVB as binder performed better than PVP-based ZnO. The XRD data prove that the electro-active materials were successfully transferred to the sample. However, based on the evaluation, the results show that the cathode electrode was dominated by the silver instead of Ni(OH)2, which leads the sample to behave like a silver-zinc battery instead of a nickel-zinc battery. Nevertheless, the printed zinc battery electrodes were successfully evaluated, and more current collector materials for cathode should be explored for printed nickel-zinc batteries.


2013 ◽  
Vol 310 ◽  
pp. 90-94 ◽  
Author(s):  
Xiao Bing Huang ◽  
Hong Hui Chen ◽  
Huang Rong Li ◽  
Qian Peng Yang ◽  
Shi Biao Zhou ◽  
...  

Li2FeSiO4/C and Li1.97Mg0.03FeSiO4/C composites were successfully prepared by a solid-state method. Both samples were systematically investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), the charge-discharge test and electrochemical impedance spectra measurement, respectively. It was found that the Li1.97Mg0.03FeSiO4/C composite exhibited an excellent rate capability with a discharge capacity of 144mAh g-1 at 0.2C and 97mAh g-1 at 5C, and after 100 cycles at 1 C, 96% of its initial capacity was retained.


2011 ◽  
Vol 399-401 ◽  
pp. 1491-1495
Author(s):  
Huan Liu ◽  
Yao Chun Yao ◽  
Yong Mei Li ◽  
Hui Hua Yi ◽  
Yong Nian Dai

The layered cathode material for Li-ion batteries was synthesized by mechanical activation-high temperature solid state method. XRD and electrochemical measurements were used to characterize the structure and electrochemical performance of the product. The X-ray diffraction (XRD) patterns reveal that the material is crystallized to layered a-NaFeO2structure. The cathode material with excellent electrochemical performance was obtained by sintering the mixed raw materials with n (Li)/n (M) =1.11. The initial discharge capacity was 128mAh/g at a current density of 20mA/g between 2.7-4.2V and the discharge capacity retention was 96% after 50 cycles.


2018 ◽  
Vol 913 ◽  
pp. 818-830 ◽  
Author(s):  
Yu Ting Chen ◽  
Hai Yan Zhang ◽  
Yi Ming Chen ◽  
Gai Qin ◽  
Xing Ling Lei ◽  
...  

A nanocrystalline LiFePO4/graphene-carbon nanotubes (LFP-G-CNT) composite has been successfully synthesized by a hydrothermal method followed by heat-treatment. The microstructure and morphology of the LFP-G-CNTs composite were comparatively investigated with LiFePO4/graphene (LFP-G) and LiFePO4/carbon nanotubes (LFP-CNT) by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The LFP-G-CNTs nanoparticles were wrapped homogeneously and loosely within a 3D conducting network of graphene-carbon nanotubes. The conducting networks provided highly conductive pathways for electron transfer during the intercalation/deintercalation process, facilitated electron migration throughout the secondary particles, accelerated the penetration of the liquid electrolyte into the LFP-G-CNT composite in all directions and enhanced the diffusion of Li ions. The results indicate that the electrochemical activity of LFP-G-CNT composite may be enhanced significantly. The charge-discharge curves, cyclic voltammograms (CV) and electrochemical impedance spectroscopy (EIS) results demonstrate that LFP-G-CNT composite performes better than LFP-G and LFP-CNT composites. In particular, LFP-G-CNT composite with a low content of graphene and carbon nanotubes exhibites a high initial discharge capacity of 168.4 mAh g−1 at 0.1 C and 103.7 mAh g−1 at 40 C and an excellent cycling stability.


Sign in / Sign up

Export Citation Format

Share Document