Use of Thermovision for Monitoring Temperature Conveyor Belt of Pipe Conveyor

2014 ◽  
Vol 683 ◽  
pp. 238-242 ◽  
Author(s):  
Peter Michalik ◽  
Jozef Zajac

The paper deals with using new technologies to monitor progressive changes in temperature conveyor belts loaded static forces without the transported material. Multiple measurements were performed to demonstrate the functional dependence of temperature conveyor belt of pipe conveyor to the size of the tensioning force.

2014 ◽  
Vol 683 ◽  
pp. 147-152
Author(s):  
Miriam Andrejiová ◽  
Anna Grinčová ◽  
Anna Pavlisková

In the last years, belt conveyors belong to the most frequently used means of transport in various industries. The most important component of the belt conveyor is the conveyor belt. Therefore, it is necessary to pay more attention also to optimal lifetime of conveyor belts. Conveyor belt lifetime is a very complicated issue. It is affected by plenty of factors, including above all the quality structure of the belt conveyor, optimal construction, production, and properties of the conveyor belt as such, adequate solution of conveyance route shifting, reasonable maintenance, and quality repairs of conveyor belts. The paper deals with the exploring the lifetime of conveyor belts depending from on some selected parameters obtained from the operating records of practice (thickness of paint layer, width and length of the belt, conveyor speed and quantity of transported material) with using appropriate mathematical - statistical methods.


2013 ◽  
Vol 76 (8) ◽  
pp. 1401-1407 ◽  
Author(s):  
L. AXELSSON ◽  
A. HOLCK ◽  
I. RUD ◽  
D. SAMAH ◽  
P. TIERCE ◽  
...  

Cleaning of conveyor belts in the food industry is imperative for preventing the buildup of microorganisms that can contaminate food. New technologies for decreasing water and energy consumption of cleaning systems are desired. Ultrasound can be used for cleaning a wide range of materials. Most commonly, baths containing fairly large amounts of water are used. One possibility to reduce water consumption is to use ultrasonic cavitation in a thin water film on a flat surface, like a conveyor belt. In order to test this possibility, a model system was set up, consisting of an ultrasound transducer/probe with a 70-mm-diameter flat bottom, operating at 19.8 kHz, and contaminated conveyor belt materials in the form of coupons covered with a thin layer of water or water with detergent. Ultrasound was then applied on the water surface at different power levels (from 46 to 260 W), exposure times (10 and 20 s), and distances (2 to 20 mm). The model was used to test two different belt materials with various contamination types, such as biofilms formed by bacteria in carbohydrate- or protein-fat–based soils, dried microorganisms (bacteria, yeasts, and mold spores), and allergens. Ultrasound treatment increased the reduction of bacteria and yeast by 1 to 2 log CFU under the most favorable conditions compared with water or water-detergent controls. The effect was dependent on the type of belt material, the power applied, the exposure time, and the distance between the probe and the belt coupon. Generally, dried microorganisms were more easily removed than biofilms. The effect on mold spores was variable and appeared to be species and material dependent. Spiked allergens were also efficiently removed by using ultrasound. The results in this study pave the way for new cleaning designs for flat conveyor belts, with possibilities for savings of water, detergent, and energy consumption.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1512
Author(s):  
Mirosław Bajda ◽  
Monika Hardygóra

Belt conveyors are used for the transportation of bulk materials in a number of different branches of industry, especially in mining and power industries or in shipping ports. The main component of a belt conveyor is its belt, which serves both as a support for the transported material along the conveyor route and as an element in the drive transmission system. Being crucial to the effective and reliable operation of the conveyor, the belt is also its most expensive and the least durable element. A conveyor belt comprises a core, covers and edges. A multiply textile belt, in which the core is constructed of synthetic fibers such as polyamide, polyester or aramid, is the oldest and still the most commonly used conveyor belt type. The plies are joined with a thin layer of rubber or another material (usually the material is the same as the material used in the covers), which provides the required delamination strength to the belt and allows the plies to move relative to each other as the belt is bent. Belts are installed on the conveyors in a closed loop in order to join belt sections, whose number and length depend on the length and type of the belt conveyor. Belts are joined with each other in a splicing procedure. The cutting of the belt core causes belt splices to be prone to concentrated stresses. The discontinued core also causes the belt to be the weakest element in a conveyor belt loop. The article presents the results of strength parameter tests that were performed on laboratory and industrial splices and indicated the reasons for the reduced strength of conveyor belt splices. Splice strength is reduced mainly due to incorrect preparation of the spliced surfaces and to different mechanical parameters of the spliced belts.


2016 ◽  
Author(s):  
Hanna Joos ◽  
Erica Madonna ◽  
Kasja Witlox ◽  
Sylvaine Ferrachat ◽  
Heini Wernli ◽  
...  

Abstract. While there is a clear impact of aerosol particles on the radiation balance, whether and how aerosol particles influence precipitation is controversial. Here we use the ECHAM6-HAM global cli- mate model coupled to an aerosol module to analyse whether an impact of anthropogenic aerosol particles on the timing and the amount of precipitation from warm conveyor belts in low pressure systems in the winter time North Pacific can be detected. We conclude that while polluted warm con- veyor belt trajectories start with 5–10 times higher black carbon concentrations, the overall amount of precipitation is comparable in pre-industrial and present-day conditions. Precipitation formation is however supressed in the most polluted warm conveyor belt trajectories.


2020 ◽  
Vol 5 (4) ◽  
pp. 111
Author(s):  
Yulia Resti ◽  
Firmansyah Burlian ◽  
Irsyadi Yani

The classification system in the sorting process in the can recycling industry can be made based on digital images by exploring the basic color pixel values ​​of images such as R, G, and B as variable inputs. In real time, the classification of cans in the sorting process occurs when cans placed on a conveyor belt move at a certain speed. This paper discusses the performance of can classification systems using the Naïve Bayes method. This method can handle all types of variables, including when all variables are continuous. Two types of conveyor belts are designed to get different speeds, and all images of the cans are captured on both conveyor belts. Two models of Bayes naive are built on the basis of the different distribution assumptions; the original model (all Gaussian distributed) and the model based on the best distribution. Performance of the classification system is built by dividing data into the learning data and the testing data with a composition of 50:50 in which each data is designed into 50 groups with different percentages on each type of cans using sampling technique without replacement. The results obtained are, first, the speed of the conveyor belt when capturing an image affects the pixel values of red, green, and blue and ultimately affects the results of the classification of cans. Second, not all input variables are Gaussian distributed. The classification system was built using assumption the best distribution model for each input variable has the better average accuracy level than the model that assumes all input variables are Gaussian distributed, and the accuracy level of classification on the first speeds of conveyor belt with a gear ratio of 12:30 and a diameter of 35 mm has an accuracy that is better than the other speed, both on the original model and the model based on the best distribution. However, it is necessary to test more statistical distribution models to obtain significant results.


2019 ◽  
Vol 18 (3) ◽  
pp. 223-232
Author(s):  
A. V. Glebov ◽  
G. D. Karmaev

Results of the analysis of scientific, technical and patent literature show that while having a great variety of constructive implementation of the proposed catchers there are no efficient and sufficiently reliable devices for catching conveyor belts at its reverse motion which are relatively simple in design. This is proved by practical activity of enterprises involved in extraction and processing of commercial minerals and other industries. A new design of a conveyor belt catcher that meets most requirements for the given equipment has been developed at the Institute of Mining, Ural of Branch of the Russian Academy of Sciences and then it has been tested under industrial conditions. The design makes provision for retention of the conveyor belt at its reverse motion beyond free edges from transported material. Catching devices are installed on both sides of the belt. Braking action of the belt at the reverse motion occurs due to its friction interaction with a catcher friction shoe located above the belt, and an eccentric mounted on the frame under the belt. A friction shoe is made with a concave curved surface facing the belt. The paper presents a calculation methodology of main parameters for the proposed design of catcher conveyor belts that permits to determine a force catching a conveyor belt down and for every braking period distance which has been passed by the belt, value of its compression, value of braking force, braking time and acceleration of belt motion, time and length of the distance passed by the belt to its full stop, parameters of a catcher and supporting structures, and other parameters. The paper also provides results of calculations for main design parameters of catching devices with an inclined conveyor having a belt width of 1400 mm for two catcher design versions: with location of an eccentric under the belt, and a brake shoe over the belt (option I) and with location of the eccentric over the conveyor belt, and the brake friction shoe under the belt (option II).


2018 ◽  
Vol 48 (8) ◽  
pp. 1364-1383 ◽  
Author(s):  
Gabriel Fedorko ◽  
Vieroslav Molnár ◽  
Peter Michalik ◽  
Miroslav Dovica ◽  
Tatiana Kelemenová ◽  
...  

This paper is dedicated to investigating the properties of smooth conveyor belts through a tensile loading test, with the aim of examining the behavior of the inner structure of the belt samples. When the belt is subjected to a long-term strain, the belt relaxation effect is observed and changes may occur to the inner structure of the belt. The tensile test at constant velocity determines the load strength limit of the strip samples. The experiment has also shown the phenomenon of relaxation of the samples after the load. Metro-tomographic analysis is used to observe the behavior of the internal structure of the belt sample after the load. The obtained results indicate the initial damage of the inner structure of the conveyor belt occurred at the value of 2157 N. Under this load, the maximum damage size was 4.8 mm. This confirms the suitability of the method for tracking changes in the internal structure.


2019 ◽  
Vol 9 (7) ◽  
pp. 1304
Author(s):  
Luis Carretero ◽  
Pablo Acebal ◽  
Salvador Blaya

A numerical analysis is carried out of the influence of the de-phasing parameter of anoptical conveyor belt in the enantiomeric separation. The optical conveyor belt is obtained by theinterference of a Laguerre Gaussian and a Gaussian beam with different beam waists, which aretemporally de-phased. In order to obtain the maximum separation distance between enantiomers,we calculate the optimum range of values of the de-phasing parameter.


Sign in / Sign up

Export Citation Format

Share Document