Laboratory Study on the Mechanical Properties of Polypropylene Fiber Concrete Exposed to High Temperatures

2014 ◽  
Vol 685 ◽  
pp. 444-447
Author(s):  
Xi Du ◽  
Su Ran Wang ◽  
Yu Chen Li ◽  
Ji Huang ◽  
Meng Qi Zhong ◽  
...  

Hydraulic servo testing system was adopted to test the mechanical properties of 144 cubic concrete specimens with different content of polypropylene fiber heated after high temperatures. The mechanical properties of cubic polypropylene fiber concrete were analyzed in this paper with the influence of different fiber contents, target temperature and cooling methods. The results of experiment show that an increase in temperature produces significant changes in concrete mechanical properties. The main properties of polypropylene fiber concrete are similar to normal concrete that tend to decrease while the temperature increases. At the same temperature, compressive strength and Young’s modulus of concrete specimens decrease with growing fiber content.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Qifang Xie ◽  
Lipeng Zhang ◽  
Shenghua Yin ◽  
Baozhuang Zhang ◽  
Yaopeng Wu

Fires are always known for seriously deteriorating concrete in structures, especially for those with certain carbonation due to long-time service. In this paper, 75 prism specimens were prepared and divided into four groups (three carbonated groups and one uncarbonated group). Specimens were tested under different temperatures (20, 300, 400, 500, 600, and 700°C), exposure times (3, 4, and 6 hours), and cooling methods (water and natural cooling). Surface characteristics, weight loss rate, and residual mechanical properties (strength, initial elastic modulus, peak, and ultimate compressive strains) of carbonated concrete specimens after elevated temperatures were investigated and compared with that of the uncarbonated ones. Results show that the weight loss rates of the carbonated concrete specimens are slightly lower than that of the uncarbonated ones and that the cracks are increased with raising of temperatures. Surface colors of carbonated concrete are significantly changed, but they are not sensitive to cooling methods. Surface cracks can be evidently observed on carbonated specimens when temperature reaches 400°C. Residual compressive strength and initial elastic modulus of carbonated concrete after natural cooling are generally larger than those cooled by water. The peak and ultimate compressive strains of both carbonated and uncarbonated concrete specimens increase after heating, but the values of the latter are greater than that of the former. Finally, the constitutive equation to predict the compressive behaviors of carbonated concrete after high temperatures was established and validated by tests.


2018 ◽  
Vol 203 ◽  
pp. 06011
Author(s):  
Saeed Ahmad ◽  
Ayub Elahi ◽  
Hafiz Waheed Iqbal ◽  
Faiza Mehmood

The objective of this research work was to determine the effect of fiber cocktail on mechanical properties of concrete. Three types of fibers were used namely monofilament polypropylene fiber, steel fiber and glass fiber. Steel and glass fiber were incorporated in concrete at different dosages while the content of Polypropylene fiber was kept constant. For this purpose, cubes (150×150×150mm) and prisms (101×101×508mm) were casted for compressive strength test on cubes and Two-Point load test on prisms. Eighteen different mixes were prepared such as control mix, single fiber concrete, double hybrid concrete and triple hybrid concrete. It was observed that both compressive and flexural strength increased with addition of single, double and triple fibers. However, the strengths of triple hybrid concrete were observed to be lesser as compared to single and double hybrid concrete.


2014 ◽  
Vol 662 ◽  
pp. 24-28 ◽  
Author(s):  
Xi Du ◽  
You Liang Chen ◽  
Yu Chen Li ◽  
Da Xiang Nie ◽  
Ji Huang

With cooling tests on polypropylene fiber reinforced concrete and plain concrete that were initially subjected to different heating temperatures, the change of mechanical properties including mass loss, uniaxial compressive strength and microstructure were analyzed. The results show that the compressive strength of concrete tend to decrease with an increase in temperature. After experiencing high temperatures, the internal fibers of the polypropylene fiber reinforced concrete melted and left a large number of voids in it, thereby deteriorating the mechanical properties of concrete.


2011 ◽  
Vol 250-253 ◽  
pp. 788-794
Author(s):  
Shu Lin Zhan ◽  
Shu Sen Gao ◽  
Jun Ying Lai

In order to study the influence of modified polypropylene (PP) fiber on the physical and mechanical properties of curing sludge, the same amount of cement and different content of polypropylene fiber were mixed into the sludge. Unconfined compressive strength tests, water content tests and shear strength tests were carried out on different specimens with different curing time. The results show that the sludge curing effect is markedly improved by the addition of the polypropylene fiber. As to the curing sludge with the same curing time, when the content of the polypropylene fiber increases, the unconfined compressive strength and the cohesive strength greatly increase, and the internal frictional angle decreases.


2011 ◽  
Vol 477 ◽  
pp. 313-318 ◽  
Author(s):  
Jian Qiang Wei ◽  
Ming Li Cao ◽  
Hang Yao

As the composite of materials, fibers compositing, which can give full play to synergism of each fiber’s reinforcement, will become an inevitable trend. Calcium carbonate whisker is a kind of green environment-friendly fibrous powder filler with high strength, high modulus and excellent thermal stability, which has been proven that it has obviously toughening and reinforcing effects on cement-based materials. In this paper, CaCO3 whiskers composite with polypropylene fiber were added into concrete as reinforcement. Effect of different content of whiskers and fibers on the mechanical properties of concrete was investigated. The results shows that the composite of CaCO3 whisker and polypropylene fiber (PP) has better toughening and reinforcing effects than that of single filler. The strength of whiskers/PPF-reinforced concrete can be obviously improved compared with that of pure concrete, whisker concrete and PPF concrete. These increases could be correlated to the synergism of PPF and CaCO3 whisker, which are different in size, aspect ratio, elastic modulus, and reinforcing role in concrete.


2019 ◽  
Vol 5 (2) ◽  
pp. 102
Author(s):  
Chaeril Anwar ◽  
Erniati Bachtiar ◽  
Nur Khaerat Nur

This research aims to determine the value of mechanical properties in fiber fibers which are submerged in seawater and to find out the optimum length of fiber fibers to the mechanical properties of fiber fibers which are submerged in sea water. The method used is an experimental method carried out in the laboratory by varying the length of the fibers, which is 25 mm; 50 mm; 75 mm; and 100 mm with 4% fiber addition. Tests of mechanical properties carried out in the form of compressive strength, split tensile strength, and flexural strength. The results of the research challenge the palm fiber-concrete that the longer the fibers used in the concrete, the mechanical properties decrease. Fiber concrete submerged in seawater has higher mechanical properties than normal concrete. Optimum fiber length length in fiber concrete from the results of this study is 25 mm.


2011 ◽  
Vol 94-96 ◽  
pp. 1184-1187
Author(s):  
Jing Hai Zhou ◽  
Hong Xiang

At present, green energy saving idea, aimed at protecting environment and saving energy, now has become the guiding philosophy of modern architecture. Based on this, recycled carpet waste fibers for textile mechanical properties of concrete were discussed in this paper. The application of polypropylene fiber concrete abroad has been widely used, which is becoming more and more popularly in China recent years. Meanwhile, research on the application of recycled polypropylene fiber concrete is still scarce. The experiment of this paper adopt waste polypropylene fibers as reinforcing fiber, and we make the standard specimen which size is . We use the specimen to do the research of mechanical properties of compressive strength and observing the variation of compressive strength of concrete specimen in different fiber volume. We discovered that when we add volume of 0.12% recycled polypropylene fiber and the length is 19mm, the compressive strength of concrete increases greatly. We draw the conclusion that the compressive strength of recycled fiber concrete is better than ordinary one from the experiment. In addition, if such concrete was used widely, we may reach the goals of conserving resources and protecting the environment.


Sign in / Sign up

Export Citation Format

Share Document