Study on Vehicular LNG Tank

2014 ◽  
Vol 687-691 ◽  
pp. 175-178
Author(s):  
Rong Li ◽  
Tuo Li ◽  
Ju Yong Zhang

The vehicular LNG(Liquefied Natural Gas) tank is a key component in the land transportation of-163°C LNG. The cryo-insulation performance of vehicular tank directly affects the security of LNG transport greatly. Based on a 40m3 vehicular LNG tank, a structural design of the vehicular LNG tank is completed, which includes its body,nozzles,heat-insulating layer,sealing devices,saddles and so on. With the safety requirements of less than 2% LNG evaporation rate, the leakage heat of LNG tank is analyzed completely. Then, a heat-insulating layer outside of LNG tank is completed with thermal design. Finally, with thermal software, the effectiveness of heat-insulating layer is proved.

2013 ◽  
Vol 393 ◽  
pp. 839-844 ◽  
Author(s):  
Mohamad Shukri Zakaria ◽  
Kahar Osman ◽  
Mohd Noor Asril Saadun ◽  
Muhammad Zaidan Abdul Manaf ◽  
Mohd Hafidzal Mohd Hanafi

Research on the waste energy and emission has been quite intensive recently. The formation, venting and flared the Boil-off gas (BOG) considered as one of the contribution to the Greenhouse Gas (GHG) emission nowadays. The current model or method appearing in the literature is unable to analyze the real behavior of the vapor inside Liquefied Natural Gas (LNG) tank and unable to accurately estimate the amount of boil-off gas formation. In this paper, evaporation model is used to estimate LNG Boil-Off rate (BOR) inside LNG tank. Using User Define Function (UDF) hooked to the software ANSYS Fluent. The application enable drag law and alternative heat transfer coefficient to be included. Three dimensional membrane type LNG cargos are simulated with selected boundary condition located in the United States Gulf Coast based on average weather conditions. The result shows that the value of BOR agrees well with the previous study done with another model and with International Marine organization (IMO) standard which is less than 0.15% weight per day. The results also enable us to visualize the LNG evaporation behaviors inside LNG tanks.


2011 ◽  
Vol 105-107 ◽  
pp. 403-407
Author(s):  
Xiao Chun Zhang ◽  
Yuan Qi Cai

Shell stiffeners are used effectively to prevent preferential local buckling of LNG tank shell. In this paper, Finite element method (FEM) is applied to pay attention to the thermal analysis on the shell stiffeners of double steel wall LNG storage tank. The structural requirements according to British Standard 7777-2:1993 has been considered and then some dimensional adjustments of shell stiffeners are made to evaluate their influence on the thermal field of double steel wall LNG storage tank. Temperature distributions and heat flux of different dimensional shell stiffeners are presented. Though the analysis of results, it puts forward the conclusion that the dimensional design of shell stiffeners used in double steel wall LNG storage tank shall take not only the structural design requirements but also the thermal design ones into consideration in order to finally save cost in both construction and normal operation.


2012 ◽  
Vol 229-231 ◽  
pp. 690-694 ◽  
Author(s):  
Mohamad Shukri Zakaria ◽  
Kahar Osman ◽  
Md. Nor Musa

Liquefied Natural Gas (LNG) fleets are coasting with various condition and behavior. These variable leads to different type of LNG fleets build every year with unavoidable generated Boil-off Gas (BOG). Estimation of BOG generated inside LNG tank play significant role in determines the ship specification and management method of BOG including venting, propulsion or requalification. Hence, in the present study, the right choices of boundary condition and parameter have been implementing in order to have good estimation amount of BOG evaporates for specific LNG tank. Three dimensional model of cargo with capacity 160000 m3 LNG carrier are simulate using ANSYS Fluent with specific ambient air temperature of 5oC and ambient seawater temperature of 0oC have been chosen as a calculation case, gain the total heat transfer rate and Boil-off Rate (BOR). The result shows that the calculation model and simulation are feasible with typical LNG fleet specification and International Marine Organization (IMO) standard.


2014 ◽  
Vol 511-512 ◽  
pp. 425-428
Author(s):  
Jie Jiang ◽  
Wen Da Zhu ◽  
Gong Sheng Yang ◽  
Jing Peng Yan ◽  
Nan Jin Gao ◽  
...  

Liquefied natural gas (LNG) is obtained by cooling the gas temperature to -162 degree. Problems with the steel cans, the insulation layer or the concrete tank of the LNG tank can lead to changes of the temperature, local temperature decreases, and the safety of the tank is threatening. Through the combination of many sets of infrared thermal imager to monitor the temperature of the LNG storage tank’s sidewall, analyze the heat imagine, establish the corresponding relationship between the locations on the sidewall of the LNG tank and on the heat imagine, determine the position of the temperature point on the tank wall. Infrared thermal imaging technique for the sidewall of LNG storage tank can find out the heat abnormal conditions and fixing the temperature drop area in time, and provide powerful guarantee for the safe storage of the liquefied natural gas.


Author(s):  
Jeom Kee Paik ◽  
Sang Eui Lee ◽  
Bong Ju Kim ◽  
Jung Kwan Seo ◽  
Yeon Chul Ha ◽  
...  

The aim of this study is to develop a new probabilistic approach to determine nominal values for tank sloshing loads in structural design of LNG FPSO (liquefied natural gas, floating production, storage, and offloading units). Details of the proposed procedure are presented in a flow chart showing the key subtasks. The applicability of the method is demonstrated using an example of a hypothetical LNG FPSO operating in a natural gas site off a hypothetical oceanic region. It is noted that the proposed method is still under development for determining reliable estimates of extreme sloshing induced impact loads. It is concluded that the developed method is useful for determining the sloshing design loads in ship-shaped offshore LNG installations in combination with virtual metocean data and operational conditions.


Author(s):  
Alfonso Ibarreta ◽  
Ryan J. Hart ◽  
Nicolas Ponchaut ◽  
Delmar “Trey” Morrison ◽  
Harri Kytömaa

With the impending natural gas boom in the United States, many companies are pursuing Department of Energy (DOE) approval for exporting liquefied natural gas (LNG), which is a cryogenic liquid. The next decade also promises to demonstrate growth in LNG-fueled fleets of vehicles and marine vessels, as well as growth in other natural gas uses. The future expansion in the LNG infrastructure will lead to an increased focus on managing the risks associated with spills of LNG. Risk analysis involving LNG spill scenarios and their consequences requires determining the size of resulting ignitable flammable vapor clouds. This in turn depends strongly on the rate of evaporation of the spilled LNG. The evaporation of a cryogenic LNG spill (and thus the flammable vapor cloud hazard) can be quite a complex process, and it is primarily controlled by the rate of spreading of the pool and by the transient conductive heat transfer from the ground to the spilled liquid. Radiative and convective heat transfer are also present, but the conductive heat transfer rate dominates in the evaporation of a cryogenic liquid spilled into a trench or sump initially at ambient temperature. The time-dependent evaporation rate can be calculated using a variety of models, such as the built-in model in PHAST Det Norske Veritas (DNV) or other proprietary models that account for pool spreading, heat conduction within the substrate, and phase change. Trenches and sumps used to contain LNG spills are normally lined with various types of concrete, including insulated or aerated concrete. The authors have found that for a cryogenic liquid, the choice of thermal properties for concrete can greatly affect the source term. This paper presents a sensitivity study of the effects of substrate properties on the evaporation rate of LNG. The study will look at the dependence for a range of sump diameters. The PHAST model results will be compared to results obtained using an in-house shallow water equation (SWE) liquid propagation and heat transfer model. The results of the paper will provide guidance for the selection of substrate properties during modeling as well as a comparison of the relative evaporation rates expected for different surfaces, such as regular concrete and insulated concrete.


Author(s):  
Erwan Auburtin ◽  
Eric Morilhat ◽  
Stéphane Paquet ◽  
Abdeslam Raissi ◽  
Ewoud van Haaften ◽  
...  

Abstract Prelude Floating Liquefied Natural Gas (FLNG) facility reached a significant milestone in June 2018 when gas was introduced onboard for the first time as part of the facility startup process, loaded from an LNG carrier moored in side-by-side (SBS) configuration. This first offshore LNG SBS operation allowed Prelude’s utilities to switch from running on diesel to running on gas. SBS mooring is the base case configuration for of floading both LNG and Liquefied Petroleum Gas (LPG) into product carriers using Marine Loading Arms (MLA) once the Prelude FLNG facility is fully operational. These complex and weather sensitive operations are expected to take place on a weekly basis. This means critical decisions about weather-window and timing should be supported as much as possible by predictive analysis and modelling of environment forecasts to reduce the risks. Prelude Floating Liquefied Natural Gas (FLNG) is designed to offload Liquefied Natural Gas (LNG) and Liquefied Petroleum Gas (LPG) to carrier vessels moored in a side-by-side (SBS) configuration, using Marine Loading Arms (MLA) technology. For onshore terminals or small/medium FLNG, the traditional design of MLA (Double Counterweight Marine Arm – DCMA), featuring a vertical riser, can be used. However due to the exceptional freeboard of Prelude a new type of MLA was designed, namely the Offshore Loading Arm Footless (OLAF), without vertical riser in order to reach the LNG or LPG manifolds located as far as about 16 meters below the MLA base. Thanks to the OLAF design, the length and weight of the articulated MLA sections is reduced in comparison with conventional DCMA, and so are the dynamic loads applied by the MLA on the vessel manifold, which was mandatory to remain below the acceptable stress limit of standard LNG/LPG carrier manifolds. OLAF employs the field proven targeting system (TS) allowing the connection and disconnection of the MLA to the vessel manifold in dynamic conditions. This paper describes the assumptions and process to design and validate this new system — in terms of overall geometry and structural design, while verifying project feasibility, aiming at a reliable design of all components and minimizing the risks during operations. The key challenges and lessons learnt are also discussed. This innovative type of MLA had to be thoroughly designed and tested before being manufactured and assembled on the FLNG. The innovation management was also coupled with the additional challenge imposed by the expected highly dynamic conditions of relative motion between vessels that were never encountered for such systems in the past. MLA were designed with the objective to cover the operable envelope induced by berthing, mooring and relative motion criteria, so that it should not become an additional criterion in general. Since such an envelope is larger for this offshore application compared to sheltered terminals, this objective was particularly challenging but could be met thanks to the OLAF design. The SBS hydrodynamic numerical model is based on potential theory and includes multi-body coupling, non-linear mooring characteristics and coupling with sloshing. This model was calibrated using wave basin tests with a good agreement, and was used to determine the maximum operable environments and associated MLA envelope, using a 39-year hindcast for various LNG carriers and considering a scenario with different criteria and loading conditions. More than 100,000 time-domain simulations were required to evaluate non-linear quantities on a reduced set of environment ‘bins’. The new OLAF-type MLA was developed using these hydrodynamic simulations. Specific processes — based on spectral screening and selection using relevant criteria — were used to identify and select, in a systematic way, the designing load cases for connecting, connected, and emergency disconnection cases, while complying with the maximum allowable loads of conventional LNG and LPG carrier manifolds. An instrumented 1:4 OLAF scale model was built and tested with 6 degrees of freedom hexapods reproducing the motions on both sides of the OLAF which enabled us to confirm a 10% accuracy of the numerical studies results. The actual OLAF were dynamically tested with a full scale motion simulator before shipment to the yard for installation. The successful first operations were performed safely and confirmed the validity of the design. Measurements are now collected onboard Prelude to verify the design and when possible improve the accuracy of numerical modelling.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5925
Author(s):  
Pavlos Rompokos ◽  
Sajal Kissoon ◽  
Ioannis Roumeliotis ◽  
Devaiah Nalianda ◽  
Theoklis Nikolaidis ◽  
...  

The growth in air transport and the ambitious targets in emission reductions set by advisory agencies are some of the driving factors behind research towards new fuels for aviation. Liquefied Natural Gas (LNG) could be both environmentally and economically beneficial. However, its implementation in aviation has technical challenges that needs to be quantified. This paper assesses the application of LNG in civil aviation using an integrated simulation and design framework, including Cranfield University’s aircraft performance tool, Orion, and engine performance simulation tool Turbomatch, integrated with an LNG tank sizing module and an aircraft weight estimation module. Changes in tank design, natural gas composition, airframe changes, and propulsion system performance are assessed. The performance benefits are quantified against a Boeing 737–800 aircraft. Overall, LNG conversion leads to a slightly heavier aircraft in terms of the operating weight empty (OWE) and maximum take-off weight (MTOW). The converted aircraft has a slightly reduced range compared to the conventional aircraft when the maximum payload is considered. Compared to a conventional aircraft, the results indicate that although the energy consumption is increased in the case of LNG, the mission fuel mass is decreased and CO2 emissions are reduced by more than 15%. These benefits come with a significant reduction in fuel cost per passenger, highlighting the potential benefits of adopting LNG for aviation.


Sign in / Sign up

Export Citation Format

Share Document