A Research on Simulations for the Adaptive Impedance Algorithm of Robot Manipulator

2014 ◽  
Vol 687-691 ◽  
pp. 548-551
Author(s):  
Fang Wang ◽  
Hua Sun ◽  
Jia Guo Lv ◽  
Zhen Yang

In this paper, the adaptive impedance control proposed by Seul is studied in detail aiming at the disadvantages of traditional impedance control algorithm. In simulation experiment, above two methods are used to control the planar robot. The performance of merits of two algorithms is analyzed detailedly. From the final result of simulation, the adaptive impedance control algorithm has the performance of robustness, that is: it can perform well as though the mathematical model of robot is not accurate and it can work well in the bad working circumstance.

2020 ◽  
pp. 29-33
Author(s):  
S. V. Kondakov ◽  
O.O. Pavlovskaya ◽  
I.D. Ivanov ◽  
A.R. Ishbulatov

A method for controlling the curvilinear movement of a high-speed tracked vehicle in a skid without loss of stability is proposed. The mathematical model of the vehicle is refined. With the help of simulation modeling, a control algorithm is worked out when driving in a skid. The effectiveness of vehicle steering at high speed outside the skid is shown. Keywords: controlled skid, dynamic stability, steering pole displacement, hydrostatic transmission, automatic system, fuel supply. [email protected]


Robotica ◽  
1993 ◽  
Vol 11 (4) ◽  
pp. 363-372 ◽  
Author(s):  
Yueh-Jaw Lin ◽  
Tian-Soon Lee

SUMMARYIn this paper a control law, which consists of a fuzzy logic controller plus a nonlinear effects negotiator for a flexible robot manipulator, is presented. The nonlinear effects negotiator is used to enhence the control system's ability in dealing with the uncertainty of the mathematical model. The control algorithm is simple and easy to tune as opposed to conventional control law which requires time consuming gains selections. To obtain fuzzy control rules, an error response plane method is proposed.


2010 ◽  
Vol 455 ◽  
pp. 132-136
Author(s):  
Xiao Zhong Ren ◽  
Ya Hui Wang ◽  
Jian Xin Su

Aiming at the dressing of involute grinding wheel, the mathematical model of involute interpolation is established. Taking the normal tolerance δ as accuracy index, the dense degree of interpolation points can be changed constantly with the change of developable angle increment △θ so that the numbers of interpolation points can meet the requirements not only for interpolating accuracy, but for interpolating efficiency. The wheel dressing software developed by using VC++ as programming tool can be applied for dressing the involute grinding wheel which can be used to grind involute gears with different teeth and modules. The results of simulation experiment verify the feasibility and correctness of the software.


2014 ◽  
Vol 599-601 ◽  
pp. 673-679
Author(s):  
Shi Guo Chen ◽  
Li Hua Hu ◽  
Dong Sheng Wu ◽  
Xue Yong Chen

The soil’s temperature plays an important role of soil ecology research. In order to gain and control soil’ temperature. A control system is proposed for soil’s temperature. And a new control algorithm which is based on the PID algorithm is designed in the control system to handle the complex change of the soil’s temperature. It does not need to know the mathematical model of soil’s temperature. At last, the control result is analyzed in this paper. The result shows that the soil’s temperature is controlled ideal by this control system which is accurate to 0.5°C.


2018 ◽  
Vol 211 ◽  
pp. 02013
Author(s):  
Mikhail Shavin

Unmanned aerial vehicle (UAV) with four tilt-motors is considered. The quadrotor includes four servomotors, which allow tilting the motors responsible for the thrust force. Additional control input signals enhance the UAVs maneuverability and forward flight speed in comparison with analogous classically designed UAVs. We develop a mathematical model of the tilt-motor quadrotor dynamics, which takes into account all principal forces and torques. On the basis of the mathematical model we design the control loop for a tiltmotor quadrotor. The implemented control algorithm not only allows to independently control position and attitude of the UAV, but also takes into account non-linear actuators constraints. Sensor signals, upon which the closed controlloop relies, are processed with the aid of Extended Kalman Filter. We demonstrate the performance of the model and the control-loop by simulating UAV’s passing an obstacle course. Our numerical experiments are also instrumental in identifying the key parameters of principal parts of the construction.


2012 ◽  
Vol 562-564 ◽  
pp. 2111-2115
Author(s):  
Wen Yi Zeng ◽  
Qian Yin

In this paper, we use the similarity measure of interval-valued fuzzy sets to investigate approximate reasoning of interval-valued fuzzy sets, propose the mathematical model of interval-valued fuzzy control, and investigate its control algorithm.


2021 ◽  
Vol 22 (9) ◽  
pp. 451-458
Author(s):  
A. A. Bobtsov ◽  
R. Ortega ◽  
N. A. Nikolaev ◽  
O. V. Slita ◽  
O. A. Kozachek ◽  
...  

In this paper the solution was proposed for the state variables estimation problem in the mathematical model of the DC switch-mode power converter built according to the Ćuk scheme. Pulse converters are one of the main components of most modern electrical devices and the circuit proposed by Slobodan Ćuk in the 70s of the 20th century is still relevant and demanded. Traditionally, PI (proportional-integral) controllers or proportional-integral adaptive control algorithm (PI-PBC), based on passification methods and superior to standard PI controllers in accuracy, are used as the control algorithm for power converters. However, you need to know the entire vector of the state variables of the converter to build a PI-PBC controller, and moreover, all its parameters must be accurately known. Unfortunately, in practice, such assumptions are not fulfilled, since parametric drifting is possible, and measurements of the converter’s state require additional sensors, which in some cases does not justify itself. Thus, there is a need to develop additional observers or estimators that allow obtaining data on all variables of the converter, as well as its parameters. The solution is based on the GPEBO method (generalized parameter estimation-based observers). The problem was solved under assumption that only the output signal (the output voltage of the converter) is measurable and some of the mathematical model parameters are unknown. An important aspect of the observer design is the development of an algorithm for unknown parameters and the state vector of a mathematical model estimation that ensures convergence in a finite time. Finite-time convergence is extremely important when designing observers since transients in pulse converters occur very quickly.


2013 ◽  
Vol 62 (2) ◽  
pp. 267-279 ◽  
Author(s):  
Błażej Jakubowski ◽  
Krzysztof Pieńkowski

Abstract The paper presents the mathematical model of an autonomous induction generator with the AC load circuit and the converter control system of the voltage magnitude at the terminals of stator generator. The control algorithm and the structure of the control system are described. The simulation results of the control system are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document