Assessment of Measuring Errors in Strain Fields Obtained via DIC on Planar Sheet Metal Specimens with a Non-Perpendicular Camera Alignment

2011 ◽  
Vol 70 ◽  
pp. 165-170 ◽  
Author(s):  
Pascal Lava ◽  
Sam Coppieters ◽  
Yue Qi Wang ◽  
Paul van Houtte ◽  
Dimitri Debruyne

The determination of strain fields based on displacement components obtained via 2D-DIC is subject to several errors that originate from various sources. In this contribution, we study the impact of a non-perpendicular camera alignment to a planar sheet metal specimen’s surface subject to biaxial loading conditions. The errors are estimated in a numerical experiment. To this purpose, deformed images - that were obtained by imposing finite element (FE) displacement fields on an undeformed image - are numerically rotated for various Euler angles. It is shown that a 3D-DIC stereo configuration induces a substantial compensation for the introduced image-plane displacement gradients. However, higher strain accuracy and precision are obtained - up to the level of a perfect perpendicular alignment - in a proposed ”rectified” 2D-DIC setup. This compensating technique gains benefit from both 2D-DIC (single camera view, basic amount of correlation runs, no cross-camera matching nor triangulation) and 3D-DIC (oblique angle compensation).

2018 ◽  
Vol 620 ◽  
pp. A203 ◽  
Author(s):  
A. Moya ◽  
S. Barceló Forteza ◽  
A. Bonfanti ◽  
S. J. A. J. Salmon ◽  
V. Van Grootel ◽  
...  

Context. Asteroseismology has been impressively boosted during the last decade mainly thanks to space missions such as Kepler/K2 and CoRoT. This has a large impact, in particular, in exoplanetary sciences since the accurate characterization of the exoplanets is convoluted in most cases with the characterization of their hosting star. In the decade before the expected launch of the ESA mission PLATO 2.0, only two important missions will provide short-cadence high-precision photometric time-series: NASA–TESS and ESA–CHEOPS missions, both having high capabilities for exoplanetary sciences. Aims. In this work we want to explore the asteroseismic potential of CHEOPS time-series. Methods. Following the works estimating the asteroseismic potential of Kepler and TESS, we have analysed the probability of detecting solar-like pulsations using CHEOPS light-curves. Since CHEOPS will collect runs with observational times from hours up to a few days, we have analysed the accuracy and precision we can obtain for the estimation of νmax. This is the only asteroseismic observable we can recover using CHEOPS observations. Finally, we have analysed the impact of knowing νmax in the characterization of exoplanet host stars. Results. Using CHEOPS light-curves with the expected observational times we can determine νmax for massive G and F-type stars from late main sequence (MS) on, and for F, G, and K-type stars from post-main sequence on with an uncertainty lower than a 5%. For magnitudes V <  12 and observational times from eight hours up to two days, the HR zone of potential detectability changes. The determination of νmax leads to an internal age uncertainty reduction in the characterization of exoplanet host stars from 52% to 38%; mass uncertainty reduction from 2.1% to 1.8%; radius uncertainty reduction from 1.8% to 1.6%; density uncertainty reduction from 5.6% to 4.7%, in our best scenarios.


2021 ◽  
Author(s):  
Pierre-Henri BLARD

This review article summarizes the state of the art of cosmogenic 3He (3Hec), with a focus on the most efficient methods for measuring this cosmogenic noble gas in terrestrial samples. After briefly reviewing the scientific applications and production pathways of cosmogenic 3He, I summarize the most important theoretical and practical aspects of 3He analyses and describe the best strategies for correcting for non-cosmogenic 3He components in minerals. I also review our knowledge of 3Hec production rates and explore potential new applications for future studies.Our ability to accurately and precisely measure cosmogenic 3He is mainly constrained by the level of the non-cosmogenic 3He background (i.e., magmatic, radiogenic, nucleogenic, and atmospheric 3He), and thus by the geological characteristics of the samples. Constructing 3He vs. 4He isochrons by analyzing several aliquots from the same sample constitutes a useful and overlooked method that is advantageous because it obviates the often-complicated step of vacuum crushing. This method also allows the direct and joint determination of cosmogenic 3He and the magmatic 3He/4He ratio. I perform numerical modeling to explore the impact of the non-cosmogenic 3He components on the final uncertainties and detection limits of 3He dating. Reducing the magmatic component by selecting phenocrysts in the 100–500 m size fraction improves the precision of cosmogenic 3He analyses. Moreover, it is important to measure U, Th, and Li concentrations in the analyzed minerals and their host rocks to ensure proper corrections for radiogenic 4He and nucleogenic 3He, improving both the accuracy and precision of the method.After summarizing the most important aspects of 3He analytical techniques, including the best 3Hec extraction techniques and the key parameters of noble gas mass spectrometry that result in accurate and precise helium isotopic measurements, I also review 3Hec production rates and their spatial variability. The global database of absolute calibration sites yields a world-wide average 3Hec production rate in olivine and pyroxene of 124 ± 11 at g−1 yr−1 using the LSD scaling and the online CREp calculator (https://crep.otelo.univ-lorraine.fr/#/). Cross-calibrations against 10Be indicate that the ratio of the production rate of 3Hec in olivine/pyroxene to that of 10Be in quartz is 33 ± 2 and increases by less than 7% between sea level and 5,000 m elevation. This important observation demonstrates that 3He in olivine/pyroxene and 10Be in quartz can be considered as synchronized chronometers. However, 3Hec/10Be cross-calibrations based on 3Hec in accessory minerals (zircon, garnet, kyanite, apatite) yield unexpectedly high 3He/10Be production ratios of 40–60 above 3,000 m elevation. As the capture of cosmogenic thermal neutrons by 6Li is unlikely to explain this excess, I discuss other plausible mechanisms that should be explored, such as 3Hec inherited from previous exposure episodes, unrecognized specific reaction pathways, or the impact of snow cover. New cross-calibration data obtained by measuring 3Hec against other cosmogenic nuclides in different settings will advance our understanding of cosmogenic nuclide production rates and improve the accuracy and precision of applications relying on cosmogenic 3He. Other improvements could extend the applicability of the 3He geoscientific toolbox; for example, coupling 3He with radioactive cosmogenic nuclides (10Be, 36Cl, 53Mn) will allow paleoaltimetry or the determination of burial ages or paleo-depths in intermediate and mafic terrains.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 385
Author(s):  
Berthold Reis ◽  
Niklas Gerlach ◽  
Christine Steinbach ◽  
Karina Haro Carrasco ◽  
Marina Oelmann ◽  
...  

The modification of the biobased polymer chitosan is a broad and widely studied field. Herein, an insight into the hydrophobization of low-molecular-weight chitosan by substitution of amino functionalities with hexanoyl chloride is reported. Thereby, the influence of the pH of the reaction media was investigated. Further, methods for the determination of the degree of substitution based on 1H-NMR, FTIR, and potentiometric titration were compared and discussed regarding their accuracy and precision. 1H-NMR was the most accurate method, while FTIR and the potentiometric titration, though precise and reproducible, underlie the influence of complete protonation and solubility issues. Additionally, the impact of the pH variation during the synthesis on the properties of the samples was investigated by Cd2+ sorption experiments. The adjusted pH values during the synthesis and, therefore, the obtained degrees of substitution possessed a strong impact on the adsorption properties of the final material.


Author(s):  
D. Goyal ◽  
A. H. King

TEM images of cracks have been found to give rise to a moiré fringe type of contrast. It is apparent that the moire fringe contrast is observed because of the presence of a fault in a perfect crystal, and is characteristic of the fault geometry and the diffracting conditions in the TEM. Various studies have reported that the moire fringe contrast observed due to the presence of a crack in an otherwise perfect crystal is distinctive of the mode of crack. This paper describes a technique to study the geometry and mode of the cracks by comparing the images they produce in the TEM because of the effect that their displacement fields have on the diffraction of electrons by the crystal (containing a crack) with the corresponding theoretical images. In order to formulate a means of matching experimental images with theoretical ones, displacement fields of dislocations present (if any) in the vicinity of the crack are not considered, only the effect of the displacement field of the crack is considered.The theoretical images are obtained using a computer program based on the two beam approximation of the dynamical theory of diffraction contrast for an imperfect crystal. The procedures for the determination of the various parameters involved in these computations have been well documented. There are three basic modes of crack. Preliminary studies were carried out considering the simplest form of crack geometries, i. e., mode I, II, III and the mixed modes, with orthogonal crack geometries. It was found that the contrast obtained from each mode is very distinct. The effect of variation of operating conditions such as diffracting vector (), the deviation parameter (ω), the electron beam direction () and the displacement vector were studied. It has been found that any small change in the above parameters can result in a drastic change in the contrast. The most important parameter for the matching of the theoretical and the experimental images was found to be the determination of the geometry of the crack under consideration. In order to be able to simulate the crack image shown in Figure 1, the crack geometry was modified from a orthogonal geometry to one with a crack tip inclined to the original crack front. The variation in the crack tip direction resulted in the variation of the displacement vector also. Figure 1 is a cross-sectional micrograph of a silicon wafer with a chromium film on top, showing a crack in the silicon.


Author(s):  
Evgeniya Mikhailovna Popova ◽  
Guzel Mukhtarovna Guseinova ◽  
Sergei Borisovich Milov

The deficit of subnational budgets and deceleration capital investments in multiple Russian regions increase the relevance of research aimed at improvement of tax incentivizing practice of the regional investment process. The studies focused on determination of the impact of socioeconomic and institutional factors upon the efficiency of investment tax expenses obtained wide circulation within the foreign scientific literature. The subject of this article is the assessment of sensitivity of the efficiency of regional tax expanses towards investment attractiveness of the types of economic activity carried out by the residents of territories of advanced socioeconomic development, created in the subjects of Far Easter Federal District. The scientific novelty and practical values of this research consists in substantiation of the reasonableness of assessment of investment attractiveness of the types of economic activity that are stimulated by tax incentives. Methodology for assessing investment attractiveness is proposed and tested. The conclusion is made that in case of low investment attractiveness of the type of economic activity, which was planned to support by tax incentives, it is required to conduct and additional analysis to avoid unjustified tax expanses.


2019 ◽  
pp. 392-400 ◽  
Author(s):  
Gunnar Kleuker ◽  
Christa M. Hoffmann

The harvest of sugar beet leads to root tip breakage and surface damage through mechanical impacts, which increase storage losses. For the determination of textural properties of sugar beet roots with a texture analyzer a reliable method description is missing. This study aimed to evaluate the impact of washing, soil tare, storage period from washing until measurement, sample distribution and number of roots on puncture and compression measurements. For this purpose, in 2017 comprehensive tests were conducted with sugar beet roots grown in a greenhouse. In a second step these tests were carried out with different Beta varieties from a field trial, and in addition, a flexural test was included. Results show that the storage period after washing and the sample distribution had an influence on the puncture and compression strength. It is suggested to wash the roots by hand before the measurement and to determine the strength no later than 48 h after washing. For reliable and comparable results a radial distribution of measurement points around the widest circumference of the root is recommended for the puncture test. The sample position of the compression test had an influence on the compressive strength and therefore, needs to be clearly defined. For the puncture and the compression test it was possible to achieve stable results with a small sample size, but with increasing heterogeneity of the plant stand a higher number of roots is required. The flexural test showed a high variability and is, therefore, not recommended for the analysis of sugar beet textural properties.


2020 ◽  
Vol 23 (10) ◽  
pp. 1010-1022
Author(s):  
Emrah Dural

Aim and scope: Due to the serious toxicological risks and their widespread use, quantitative determination of phthalates in cosmetic products have importance for public health. The aim of this study was to develop a validated simple, rapid and reliable high-performance liquid chromatography (HPLC) method for the determination of phthalates which are; dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP), di(2- ethylhexyl) phthalate (DEHP), in cosmetic products and to investigate these phthalate (PHT) levels in 48 cosmetic products marketing in Sivas, Turkey. Materials and Methods: Separation was achieved by a reverse-phase ACE-5 C18 column (4.6 x 250 mm, 5.0 μm). As the mobile phase, 5 mM KH2PO4 and acetonitrile were used gradiently at 1.5 ml min-1. All PHT esters were detected at 230 nm and the run time was taking 21 minutes. Results: This method showed the high sensitivity value the limit of quantification (LOQ) values for which are below 0.64 μg mL-1 of all phthalates. Method linearity was ≥0.999 (r2). Accuracy and precision values of all phthalates were calculated between (-6.5) and 6.6 (RE%) and ≤6.2 (RSD%), respectively. Average recovery was between 94.8% and 99.6%. Forty-eight samples used for both babies and adults were successfully analyzed by the developed method. Results have shown that, DMP (340.7 μg mL-1 ±323.7), DEP (1852.1 μg mL-1 ± 2192.0), and DBP (691.3 μg mL-1 ± 1378.5) were used highly in nail polish, fragrance and cream products, respectively. Conclusion: Phthalate esters, which are mostly detected in the content of fragrance, cream and nail polish products and our research in general, are DEP (1852.1 μg mL-1 ± 2192.0), DBP (691.3 μg mL-1 ± 1378.5) and DMP (340.7 μg mL-1 ±323.7), respectively. Phthalates were found in the content of all 48 cosmetic products examined, and the most detected phthalates in general average were DEP (581.7 μg mL-1 + 1405.2) with a rate of 79.2%. The unexpectedly high phthalate content in the examined cosmetic products revealed a great risk of these products on human health. The developed method is a simple, sensitive, reliable and economical alternative for the determination of phthalates in the content of cosmetic products, it can be used to identify phthalate esters in different products after some modifications.


2020 ◽  
Vol 16 (6) ◽  
pp. 752-762
Author(s):  
Vivek Nalawade ◽  
Vaibhav A. Dixit ◽  
Amisha Vora ◽  
Himashu Zade

Background: Food and herbal extracts rich in Quercetin (QRT) are often self-medicated by diabetics and can potentially alter the pharmacokinetics (PK) of Metformin HCl (MET) and Canagliflozin (CNG) leading to food or herb-drug interactions and reduced therapeutic efficacy. However, the impact of these flavonoids on the pharmacokinetic behaviour of MET and CNG is mostly unknown. Methods: A simple one-step protein precipitation method was developed for the determination of MET and CNG from rat plasma. The mobile phase chosen was MeOH 65% and 35% water containing 0.1% formic acid at a flow rate of 1mL/min. Results: The retention time of MET, internal standard (Valsartan) and CNG was 1.83, 6.2 and 8.2 min, respectively. The method was found to be linear in the range of 200 - 8000 ng/mL for CNG and 100 = 4000 ng/ml for MET. Precision and accuracy of the method were below 20% at LLOQ and below 15% for LQC, MQC, and HQC. Conclusion: The method was successfully applied for the determination of PK of MET and CNG by using 100 μL of rat plasma. QRT co-administration affects the PK parameters of MET and CNG. This alteration in PK parameters might be of significant use for clinicians and patients.


Sign in / Sign up

Export Citation Format

Share Document