The Validation of Weld Residual Stresses for Use in Structural Integrity Assessment

2011 ◽  
Vol 70 ◽  
pp. 297-302 ◽  
Author(s):  
Steve K. Bate ◽  
P. John Bouchard

The continued safe and reliable operation of plant invariably has to consider the assessment of defects in welded structural components. This requires some estimate of the residual stresses that have developed during the welding fabrication process. For as-welded structures these stresses can be of yield magnitude. Engineering critical assessment procedures such as R6, BS 7910, FITNET and API 579-1 provide simplified estimates, bounding profiles or advice on detailed analysis or measurement which can be applied to provide conservative estimates of the remaining life of plant. The use of finite element analysis (FEA) is being applied more frequently to predict residual stresses in welded components for assessment purposes. This calculation involves complex non-linear analyses with many assumptions. As a consequence, the accuracy and reliability of solutions is variable. In order to improve the consistency of weld modelling, and hence the accuracy and confidence in their use, a set of Guidelines covering the calculation of residual stresses have been developed. The residual stress calculations need to be validated before the results can be used in assessments and guidance on how to demonstrate the required standard of validation proof is provided with these Guidelines. The level of validation required, depends on the problem being solved and the sensitivity of the assessment to the presence of residual stress. For example a high level of validation may be required for assessments of safety critical plant. To support these calculations, measurements are required and a series of ‘Weld Residual Stress Benchmarks’, describing welded mock-ups which have been measured using various measurement techniques, are being collated which the users can then refer to when validating their finite element modelling techniques and thus provide a greater confidence in the predicted results.

Author(s):  
S. K. Bate ◽  
A. P. Warren ◽  
C. T. Watson ◽  
P. Hurrell ◽  
J. A. Francis

A long-term UK research programme on residual stresses was launched in 2004. It involves Rolls-Royce plc and Serco Assurance, and is supported by UK industry and academia. The programme is aimed at progressing the understanding of weld residual stresses and the implementation of finite element simulation and residual stress measurement for assessing the integrity of engineering structures. Following on from this, the intention is then to develop improved guidance on residual stress modelling techniques. In the first two years finite element activities have addressed heat source representation, simplified modelling (e.g. 2D v 3D, bead lumping), material hardening models, high temperature behaviour and phase transformations. It is recognized that simplifying assumptions have to be made in order to reduce the computational run-time and modelling complexity, especially for multi-pass welds. The effects of these assumptions on the determined stresses have been considered by carrying out finite element analyses of welded mock-ups. The welded mock-ups have been developed to provide measured residual stress data which are necessary to validate the modelling techniques that have been developed. These activities have been used to support the development of guidelines on the use finite element analysis to predict residual stresses in welded components. These guidelines will be incorporated in the next issue of the British Energy R6 defect assessment procedure.


2000 ◽  
Vol 123 (1) ◽  
pp. 150-154
Author(s):  
John H. Underwood ◽  
Michael J. Glennon

Laboratory fatigue life results are summarized from several test series of high-strength steel cannon breech closure assemblies pressurized by rapid application of hydraulic oil. The tests were performed to determine safe fatigue lives of high-pressure components at the breech end of the cannon and breech assembly. Careful reanalysis of the fatigue life tests provides data for stress and fatigue life models for breech components, over the following ranges of key parameters: 380–745 MPa cyclic internal pressure; 100–160 mm bore diameter cannon pressure vessels; 1040–1170 MPa yield strength A723 steel; no residual stress, shot peen residual stress, overload residual stress. Modeling of applied and residual stresses at the location of the fatigue failure site is performed by elastic-plastic finite element analysis using ABAQUS and by solid mechanics analysis. Shot peen and overload residual stresses are modeled by superposing typical or calculated residual stress distributions on the applied stresses. Overload residual stresses are obtained directly from the finite element model of the breech, with the breech overload applied to the model in the same way as with actual components. Modeling of the fatigue life of the components is based on the fatigue intensity factor concept of Underwood and Parker, a fracture mechanics description of life that accounts for residual stresses, material yield strength and initial defect size. The fatigue life model describes six test conditions in a stress versus life plot with an R2 correlation of 0.94, and shows significantly lower correlation when known variations in yield strength, stress concentration factor, or residual stress are not included in the model input, thus demonstrating the model sensitivity to these variables.


2017 ◽  
Vol 754 ◽  
pp. 268-271 ◽  
Author(s):  
Raffaele Sepe ◽  
M. Laiso ◽  
A. de Luca ◽  
Francesco Caputo

The study proposed within this paper deals with an application of finite element techniques to the thermo-structural analysis of a dissimilar butt-welded joint. Residual stresses induced by the fusion arc-welding of steel joints in power generation plants are a concern to the industry. Nowadays, the application of finite element method appears to be a very efficient method for the prediction and the investigation of the weld-induced residual stresses, nevertheless the detailed modelling of all phenomena involved in such process is still challenging. The structural integrity assessment of welded structures strongly requires a deep investigation of weld-induced residual stresses in order to be compliant with safety requirement of power plant. The longitudinal and transversal residual stresses in dissimilar material butt joints of 8 mm thick for V-groove shape were studied. The developed thermo-mechanical FE model as well as the simulation procedures are detailed and results are discussed. As a result of such work, it has been found out that residual stresses in the two dissimilar plates are characterized by very different magnitudes and distribution.


Author(s):  
Francis H. Ku ◽  
Pete C. Riccardella

This paper presents a fast finite element analysis (FEA) model to efficiently predict the residual stresses in a feeder elbow in a CANDU nuclear reactor coolant system throughout the various stages of the manufacturing and welding processes, including elbow forming, Grayloc hub weld, and weld overlay application. The finite element (FE) method employs optimized FEA procedure along with three-dimensional (3-D) elastic-plastic technology and large deformation capability to predict the residual stresses due to the feeder forming and various welding processes. The results demonstrate that the fast FEA method captures the residual stress trends with acceptable accuracy and, hence, provides an efficient and practical tool for performing complicated parametric 3-D weld residual stress studies.


Author(s):  
S. K. Bate ◽  
P. Hurrell ◽  
J. A. Francis ◽  
M. Turski

A long-term UK research programme on residual stresses was launched in 2004. It involves Rolls-Royce plc and Serco Assurance, supported by UK industry and academia. The programme is aimed at progressing the understanding of weld residual stresses and the implementation of finite element simulation and residual stress measurement for assessing the integrity of engineering structures. Following on from this, the intention is then to develop improved guidance on residual stress modelling techniques and then to provide methods and analysis tools for design in order to control and minimise residual stress. The focus of the work to date has been to develop modelling guidelines which can be used by a finite element analyst to predict the residual stresses in austenitic welded components. These guidelines are now drafted and will be incorporated into the next issue of the British Energy R6 defect assessment procedure following peer review. The guidelines have been developed based on the experience that has been attained using various modelling techniques. To support this development, a series of welded mock-ups have been manufactured. The residual stresses in these welds have been measured using various techniques (diffraction and strain relaxation). These measurements are being used to validate the predicted stresses. It is only by corroborating each other that the resulting residual stresses can be confidently used for assessment. Mock-ups are also being used to develop material models for ferritic steel which undergo phase transformations, and to investigate how various weld parameters affect the magnitude and distribution of residual stress. Similarly, mock-ups have been manufactured to investigate the effect of start-stops on residual stresses. The programme is also supported by experimental testing to develop physical and mechanical properties which are required for analysis, i.e. up to melting temperature. Both conventional and miniaturised testing has been used to measure properties in ferritic and austenitic steels. A task has also been undertaken to develop a methodology for providing upper bound residual stress profiles which can be used as an initial estimate of stress for use in structural assessment.


Author(s):  
Shivdayal Patel ◽  
B. P. Patel ◽  
Suhail Ahmad

Welding is one of the most used joining methods in the ship industry. However, residual stresses are induced in the welded joints due to the rapid heating and cooling leading to inhomogenously distributed dimensional changes and non-uniform plastic and thermal strains. A number of factors, such as welding speed, boundary conditions, weld geometry, weld thickness, welding current/voltage, number of weld passes, pre-/post-heating etc, influence the residual stress distribution. The main aim of this work is to estimate the residual stresses in welded joints through finite element analysis and to investigate the effects of boundary conditions, welding speed and plate thickness on through the thickness/surface distributions of residual stresses. The welding process is simulated using 3D Finite element model in ABAQUS FE software in two steps: 1. Transient thermal analysis and 2. Quasi-static thermo-elasto-plastic analysis. The normal residual stresses along and across the weld in the weld tow region are found to be significant with nonlinear distribution. The residual stresses increase with the increase in the thickness of the plates being welded. The nature of the normal residual stress along the weld is found to be tensile-compressive-tensile and the nature of normal residual stress across the weld is found to be tensile along the thickness direction.


Author(s):  
Jinya Katsuyama ◽  
Koichi Masaki ◽  
Kunio Onizawa

Stress corrosion cracking (SCC) have been observed in reactor coolant pressure boundary piping system at nuclear power plants. When an SCC is found, the structural integrity of piping should be assessed according to a fitness-for-service rule. However, the rule stipulates the assessment procedures for crack growth and failure only for a simple structure such as cylindrical or plate-wise structure. At the present, the methodology even of an SCC growth evaluation for a geometrically complicated piping such as saddle-shaped weld joints has not been established yet. This may be because analyses on the weld residual stress distribution which affects the SCC growth behavior around such portion are difficult to conduct. In this study, we established a finite element analysis model for a saddle-shaped weld joint of pipes. The residual stress distributions produced by the tungsten inert gas (TIG) welding were calculated based on thermal-elastic-plastic analysis with moving and simultaneous heat source models. Analysis results showed complicated weld residual stress distributions, i.e., residual stresses in both hoop and radial directions were tensile at the inner surface near the nozzle corner in branching pipe. SCC growth simulation based on S-version finite element method (S-FEM) using the weld residual stress distributions in saddle-shaped weld joint was also performed. We confirmed an applicability and the accuracy of S-FEM to saddle-shaped weld joint.


Author(s):  
M Grujicic ◽  
J R DeLong ◽  
W S DeRossett

The development of residual stresses in a hybrid α-SiC lining/CrMoV steel jacket gun barrel during shrink fitting of the jacket over the lining is studied using a probabilistic finite element analysis. Particular attention is given to understanding the development of the axial compressive stress in the ceramic lining, since this stress (if sufficiently high) can prevent lining failure caused by formation and growth of circumferential cracks near the barrel ends. To quantify the effect of variability in various design, material and process parameters on the magnitude and the distribution of the axial residual stress, a probabilistic structural analysis approach, known as the advanced mean value (AMV) method, is used, enabling determination of the cumulative distribution function for failure of the lining. The results obtained are validated using the adaptive importance sampling (AIS) method, an efficient direct statistical sampling technique. Lastly, the corresponding sensitivity factors which quantify the effect of variability in each parameter on the magnitude of axial residual stresses in the ceramic lining are computed. The results indicate that the loss of the compressive axial stress in the lining near the barrel ends is affected to the greatest extent by the magnitude of the friction coefficient at the lining/barrel interface.


1993 ◽  
Vol 60 (2) ◽  
pp. 300-309 ◽  
Author(s):  
T. Nishimura

New equations for calculating residual stress distribution are derived from the theory of elasticity for tubes. The initial distribution of the stresses including the shearing stress is computed from longitudinal distributions of residual stresses measured by the X-ray methods at the surface after removal of successive concentric layers of material. For example, the residual stresses of a steel tube quenched in water were measured by the X-ray diffraction method. The new method was also applied to a short tube with hypothetical residual stress distribution. An alternative finite element analysis was made for a verification. The residual stresses computed by finite element modeling agreed well with the hypothetical residual stresses measured. This shows that good results can be expected from the new method. The equations can also be used for bars by simple modification.


Sign in / Sign up

Export Citation Format

Share Document